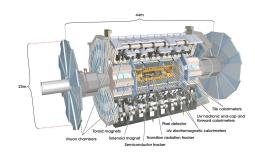
Searches for new phenomena in leptonic final states using the ATLAS detector

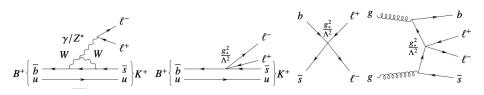
Corfu2022: Workshop on the Standard Model and Beyond

D. Wilbern ¹ (on behalf of the ATLAS collaboration)

University of Oklahoma ¹

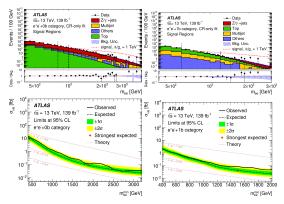
August 30, 2022




Corfu 2022 Searches for new phenomena in lentonic final states using the ATLAS detector

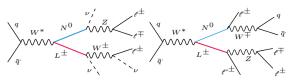
BSM physics in leptonic final states at ATLAS

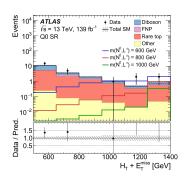
- There are many interesting BSM scenarios to study with leptonic final states. To name a few:
 - Lepton flavor universality violation (LFV)
 - Enhancements to rare decays of B mesons
 - Seesaw mechanism to explain the origin of neutrino mass
- 2 strategies for BSM searches with the ATLAS experiment:
 - Direct searches for heavy resonances
 - Type-III seesaw mechanism
 - Vectorlike tau
 - Combination of searches for heavy resonances
 - Heavy resonances in $au + E_{\mathrm{T}}^{\mathrm{miss}}$
 - Precision measurements
 - $2\ell + 0$ or 1 b jet
 - $e^{\pm}\mu^{\mp}$ asymmetry



Two leptons, 0-1 *b*-jets

- Rare decays of B mesons, e.g. $bs\ell\ell$, may violate lepton flavor universality in BSM scenarios
- Recent results from LHCb suggest tension with the SM in rare B decays that can be explained by LFV
- BSM contribution to $bs\ell\ell$ was modelled by a 4-point EFT with two parameters: coupling g_* and BSM energy scale Λ
- ullet Measurement of $\ell^\pm\ell^\mp$ (same-flavor light leptons) with 0 or 1 b jet
- Major backgrounds are Z+jets (0 b-jet channel) and top physics (1 b-jet channel)

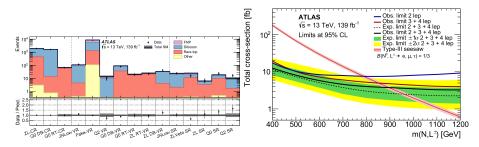

Two leptons, 0-1 b-jets results


- No significant deviation from SM expectations was observed
- Upper limits for the $bs\ell\ell$ EFT model were determined separately in e and μ channels:
 - ullet Observed limit for electron channel is $\Lambda/g_* < 2.0$ TeV at the 95% CL
 - \bullet Observed limit for muon channel is $\Lambda/g_* < 2.4$ TeV at the 95% CL
- Recent results from LHCb indicate tension with SM in $bs\ell\ell$ corresponding to $\Lambda/g_* \approx 30 \text{ TeV}$

Search for type-III seesaw

- Search for a triplet under $SU(2)_{\rm L}$ of charged heavy leptons L^\pm and a neutral Majorana neutrino N^0 coupled to EW gauge bosons
- Combination of 5 signal regions with 3 or 4 leptons
- Major backgrounds are from top physics, diboson, and misidentified photons (estimated with fake factor method)
- Likelihood fit to $m_{\mathrm{T},3\ell}$ in 3 lepton regions and $H_{\mathrm{T}} + E_{\mathrm{T}}^{\mathrm{miss}}$ in 4 lepton regions $(H_{\mathrm{T}} \equiv \sum p_{\mathrm{T}}(\ell))$

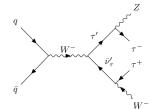
Production modes for 3 and 4 lepton channels

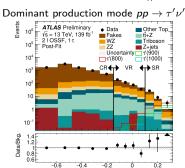


 $H_{\mathrm{T}} + E_{\mathrm{T}}^{\mathrm{miss}}$ in 4 ℓ channel with $\sum_{i=1}^4 Q(\ell_i) = 0$

CERN-EP-2021-211 Searches for new phenomena in leptonic final states using the ATLAS detector 5 /

Search for type-III seesaw results

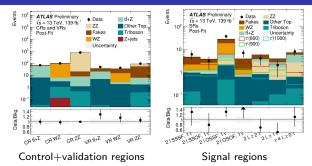

- No significant deviation from the SM was observed
- ullet Expected upper mass limit on L^\pm mass is 900 \pm 80 GeV at the 95% CL
- ullet Observed upper mass limit on L^\pm mass is 870 GeV at the 95% CL



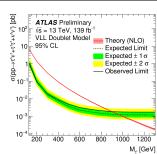
CERN-EP-2021-211 Searches for new phenomena in leptonic final states using the ATLAS detector 6

Search for vectorlike taus

- Search for vectorlike leptons τ' , ν' (mass-degenerate) having large mixing with third generation leptons τ , ν_{τ}
- Vectorlike taus appear in many BSM theories including rare B meson decay anomalies
- Combination of 7 signal regions with at least 2 light leptons and 0 or 1 hadronic τ
- Major backgrounds are from top physics, diboson, and misidentified leptons/taus (estimated with fake factor method)
- Vectorlike signal separated from SM backgrounds using boosted decision trees (BDT)

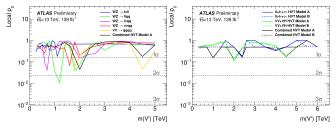


BDT score for 2ℓ OSSF + $au_{
m had}$ events

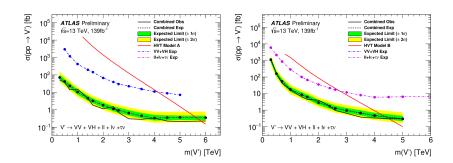

BDT Score

ATI_COM_PHYS-2022-056 Searches for new phenomena in leptonic final states using the ATI_AS detector 7 /

Search for vectorlike taus results


- No significant deviation from the SM was observed
- 970 GeV expected upper limit on τ' , ν' mass at the 95% CL
- 130 900 GeV mass range excluded by observed limits at the 95% CL

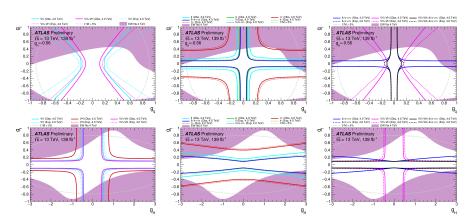
ATL-COM-PHYS-2022-056 Searches for new phenomena in leotonic final states using the ATLAS detector


Combination of searches for heavy resonances

- Direct searches for high mass resonances are a staple of the LHC physics program
- Results from orthogonal ATLAS analyses in the following channels are statistically combined:
 - $WZ \rightarrow qqqq, \nu\nu qq, \ell\nu qq, \ell\ell qq, \ell\nu\ell\ell$
 - $WH \rightarrow qqbb, \ell\nu bb$
 - $ZH \rightarrow \nu \nu bb, \ell \ell bb$
 - $\ell\ell, \ell\nu, \tau\nu$
- Interpretation with spin-1 mass-degenerate heavy vector triplet model (W'^\pm, Z')
 - Weakly-coupled model (model A): couplings $g_H = -0.56$, $g_f = -0.55$
 - Strongly-coupled model (model B): couplings $g_H = -2.9$, $g_f = 0.14$

ATLAS-CONF-2022-028 Searches for new phenomena in leptonic final states using the ATLAS detector 9

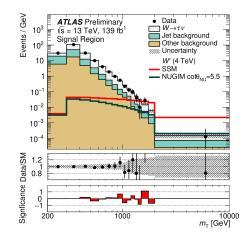
Combination of searches for heavy resonances 1D limits



- No significant deviation from the SM is observed
- \bullet Observed limits at the 95% CL on V' mass are 4.5 TeV for a weakly-coupled HVT model and 5.8 TeV strongly-coupled HVT model

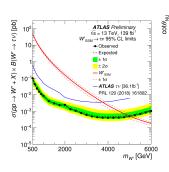
ATLAS-CONF-2022-028 Searches for new phenomena in leptonic final states using the ATLAS detector 10

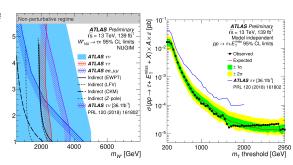
Combination of searches for heavy resonances 2D limits


- No significant deviation from the SM (i.e. $g_f = g_q = g_I$) is observed
- Limits on combinations of V' couplings g_f , g_H , g_I , g_q are derived for individual channels and combinations

ATLAS-CONF-2022-028 Searches for new phenomena in leptonic final states using the ATLAS detector 11 /

High-mass resonances with $au + E_{\mathrm{T}}^{\mathrm{miss}}$


- Undiscovered heavy gauge bosons may be a source of lepton flavor universality violation
- Searches for various heavy gauge boson models decaying to tau leptons
 - Sequential Standard Model (SSM): W', Z' couplings to fermions are identical to those of SM W, Z
 - Non-universal gauge interaction models (NUGIM): W', Z' couplings to fermions vary across the three lepton generations
- One signal region with $E_{
 m T}^{
 m miss} < 150$ GeV and $0.7 < p_{
 m T}(au)/E_{
 m T}^{
 m miss} < 1.3$
- Major backgrounds are $W \to \tau \nu$ and multijet (estimated using events that fail τ ID requirements)

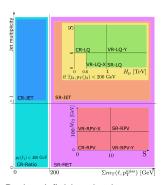


ATLAS-CONE-2021-025

High-mass resonances with $au + \mathcal{E}_{\mathrm{T}}^{\mathrm{miss}}$ results

- No significant deviation from the SM was observed
- ullet Observed upper limit on W' mass under the SSM is 5.0 TeV at the 95% CL
- \bullet Observed upper limits on W' mass under NUGIM are 3.0-5.0 TeV (depending on model parameters) at the 95% CL
- Model-independent observed upper limits on the visible cross section for $\tau+E_{\mathrm{T}}^{\mathrm{miss}}$ production range from 0.0141-16.7 fb depending on the transverse mass threshold

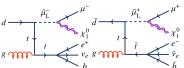
ATLAS-CONF-2021-025 Searches for new phenomena in leptonic final states using the ATLAS detector 13 / 17

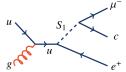

$e^{\pm}\mu^{\mp}$ asymmetry

Measurement of

$$\rho = \frac{\sigma(pp \to e^+\mu^-)}{\sigma(pp \to e^-\mu^+)}$$

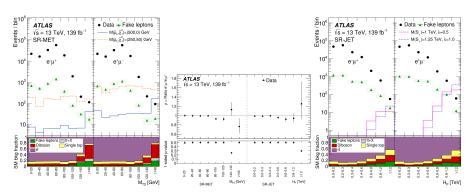
as a test of lepton universality


- Major backgrounds are top physics, diboson, and fake leptons (estimated with matrix method)
- Signal region definitions are based on flavor-symmetric variables \mathcal{S} , M_{T2} , and H_{P}

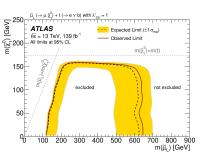

Region definitions in phase space

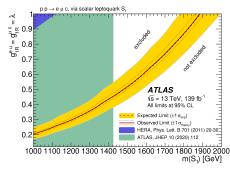
Two BSM models considered to give $\rho \neq 1$:

R-parity violating supersymmery



• Scalar leptoquarks with $g_{1R}^{e\mu}=g_{1R}^{\mu c}\leq 1$




$e^{\pm}\mu^{\mp}$ asymmetry results

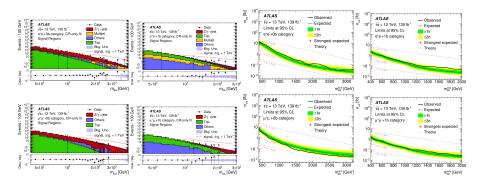
ullet No significant deviation from the SM (i.e. ho=1) was observed

$e^{\pm}\mu^{\mp}$ asymmetry BSM results

Limits on *R*-parity violating supersymmetry $(\lambda'_{231}$ fixed at unity)

Limits on scalar leptoquark model

- Limits at 95% CL for *R*-parity violating SUSY model are reported for various values of coupling parameter λ'_{231} , smuon mass $m(\tilde{\mu}_L)$, and neutralino mass $m(\tilde{\chi}^0_1)$
- Observed upper limit on mass of scalar leptoquarks is 1880 GeV at 95% CL
- ullet Other leptoquark analyses place limits near 1420 GeV, at which $g_{1R}^{e\mu}=g_{1R}^{\mu c}$ reduces to 0.46


Summary

- No significant deviations from the SM were observed by ATLAS in leptonic channels
- Limits were set at the 95% CL for BSM models including:
 - Vectorlike tau
 - Type-III seesaw
 - R-parity violating SUSY
 - Scalar leptoquarks
 - Heavy vector triplet
 - Sequential Standard Model
 - Non-universal gauge interaction models
 - EFT enhancements to bsℓℓ
- Check the ATLAS Exotics and HDBS public TWikis for more!

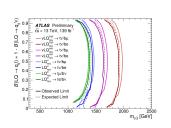
Thank you!

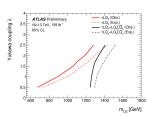
Backup

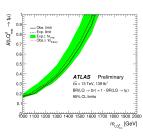
2 leptons + 0 or 1 b jet results

$e^{\pm}\mu^{\mp}$ asymmetry flavor-symmetric variables

ullet S: "object-based $ec{p}_{\mathrm{T}}^{\mathrm{miss}}$ significance" (see ATLAS-CONF-2018-038)


$$\mathcal{S}^2 = 2 \, \text{In} \left(\frac{\text{max}_{\textbf{p}_{\mathrm{T}}^{\mathrm{invis}} \neq 0} \, \mathcal{L}(\textbf{E}_{\mathrm{T}}^{\mathrm{miss}} | \textbf{P}_{\mathrm{T}}^{\mathrm{invis}})}{\text{max}_{\textbf{p}_{\mathrm{T}}^{\mathrm{invis}} = 0} \, \mathcal{L}(\textbf{E}_{\mathrm{T}}^{\mathrm{miss}} | \textbf{P}_{\mathrm{T}}^{\mathrm{invis}})} \right)$$


where the likelihoods in the numerator and denominator are maximized w.r.t. the constraints $p_{\rm T}^{\rm invis} \neq 0$ and $p_{\rm T}^{\rm invis} = 0$ respectively


- $M_{\rm T2} = \min_{\vec{a}+\vec{b}=\vec{p}_{\rm T}^{\rm miss}} \max\left[m_{\rm T}(e,\vec{a}),m_{\rm T}(\mu,\vec{b})\right]$ where \vec{a} and \vec{b} represent the contributions to $p_{\rm T}^{\rm miss}$ from each semi-leptonic decay of a pair-produced particle
- $\bullet \; H_{
 m P} = |ec{p}_{
 m T}^e| + |ec{p}_{
 m T}^\mu| + |ec{p}_{
 m T}^{j_1}|$

Other searches for scalar leptoquarks

- Some recent searches for leptoquarks by ATLAS:
 - ATLAS-CONF-2022-009: Scalar/vector leptoquarks decaying to 3rd generation quarks and light leptons
 - ATLAS-CONF-2022-037: Scalar leptoquarks in $b\tau\tau$ final states
 - ATLAS-CONF-2022-052: Leptoquark pairs decaying to $t\ell^- \bar{t}\ell^+$

