String Excitation by Initial Singularity of Inflation

Based on JHEP10(2021)025

This work is in collaboration with Daisuke Yoshida (Nagoya U.)

Kanji Nishii (Kobe U. PhD)

Introduction $(1/2)$

・Inflation models are the most vigorously studied model of the early universe.

ex. Starobinsky model, hill-top model, etc...

・A singularity occurs at very early stage of inflation due to a component of Ricci tensor diverges.

 \rightarrow Does a singularity due to the divergence of a component of Ricci tensor cause problems?

Introduction (2/2)

• From what point of view do you find out "whether an initial singularity causes problems"?

 \cdot Effects of quantum gravity is important on the early stage of inflation.

- \rightarrow Consider (bosonic) string theory to investigate the initial singularity of an inflationary universe.
- ・Focus on expectation values of mass of string.

・A singularity should be resolved by effects of quantum gravity if it causes a divergence of mass.

Contents

- 1, Introduction $\sqrt{ }$
- 2, Initial singularity in FLRW space-time
- 3, String excitation by initial singularity in FLRW
- 4, String excitation in specific inflation models
- 5, Summery and Outlook

Initial singularity in FLRW space-time

 \cdot Flat FLRW space-time in light cone coordinates

$$
g_{\mu\nu}dx^{\mu}dx^{\nu} = -2dudv + a^2(u)dv^2 + a^2(u)(v - \eta(u))^2d\Omega^2
$$

 \cdot A singularity cause at the past $u = 0$ by divergence of uu component of Ricci tensor in inflationary universe.

$$
R_{uu} = -2A(u)
$$

$$
A(u) := \frac{\dot{H}}{a^2}, \quad a(u) \stackrel{u \to 0}{\sim} 0
$$

・How do expectation values of mass behave when a string passes through the singularity?

Contracting universe

・Construct a contracting universe by using a continuity of the metric.

• The Bogoliubov transformation allows us to compare the masses before and after passing through the singularity.

EOM of string

 \cdot Consider a quantization of string and EOM in simplified FLRW space-time by taking the Penrose limit.

 $\cdot X_n^i(\tau)$ determine the motion of strings.

$$
-\frac{d^2X_n^i}{d\tau^2} + \mathcal{V}(\tau)X_n^i = E_nX_n^i, \quad \mathcal{V}(\tau) := \alpha'^2 p^2 A(\alpha' p \tau), \quad E_n := n^2
$$

 \cdot This is Schrödinger-like equation has a potential determined by $A(u = \alpha' p \tau)$.

$$
\mathbb{X} \ R_{uu} = -2A(u)
$$

$$
A(u) := \frac{\dot{H}}{a^2}, \quad a(u) \stackrel{u \to 0}{\sim} 0
$$

String excitation by singularity $(1/3)$

• The Bogoliubov transformation from in-state (contracting universe) to out-state (inflationary universe)

String excitation by singularity (2/3)

• Calculate an expectation value of mass of out-state looked from in-state by using the Bogoliubov coefficients.

$$
\langle M_{\text{out}}^2 \rangle = \frac{\langle 0_{\text{in}} | M_{\text{out}}^2 | 0_{\text{in}} \rangle}{\langle 0_{\text{in}} | 0_{\text{in}} \rangle} \sim \frac{2}{\alpha'} \sum_{n=1}^{\infty} \sum_{i=1}^2 n |B_n^i|^2
$$

 \cdot The Bogoliubov coefficient B_n^i is the following as,

$$
B_n^i \simeq \frac{p^2 \alpha'^2}{2in} \int_{-\infty}^{\infty} d\tau \ e^{-2in\tau} A(\alpha' p \tau)
$$

so we can calculate the mass when we obtain uu components of Ricci tensor $A(u = \alpha' p \tau)$.

String excitation by singularity (3/3)

 \cdot In general, $A(u)$ takes the following form in an inflation models. (The values of β are different for each models)

$$
A(u) = -\frac{\kappa}{|u|^{\beta}}, \quad \kappa > 0 : \text{const}, \quad 0 < \beta < 2
$$

 \cdot The expectation value of mass converges for $0 < \beta < 1$ and diverges for $1 \leq \beta < 2$.

$$
\langle M_{\rm out}^2 \rangle = \begin{cases} \text{converge} & 0 < \beta < 1, \\ \text{diverge} & 1 \leq \beta < 2 \end{cases}
$$

 \rightarrow We can distinguish models whether break down or not by calculating the value of β .

Starobinsky model

 \cdot The potential of Starobinsky model is

$$
V(\phi) = 3M_{pl}^2 \bar{H}^2 \left(1 - e^{-\frac{\phi}{\mu}} + \cdots \right), \ \ \mu : \text{const}
$$

• We can calculate $A(u)$ easily as

$$
A(u) \sim -\frac{\kappa}{u^2 (\log u)^2}
$$

This corresponds to $1 \leq \beta < 2$, so the mass diverges.

 \rightarrow The initial singularity in Starobinsky model should be removed by effects of quantum gravity.

Cosine type hill-top model

 \cdot The potential of Cosine type hill-top model is

$$
V(\phi) = \frac{3M_{pl}^2 \bar{H}^2}{2} \left(1 + \cos \frac{\phi}{f}\right) = 3M_{pl}^2 \bar{H}^2 \left(1 - \frac{1}{2} \frac{M_{pl}^2}{2f^2} \frac{\phi^2}{M_{pl}^2} + \cdots\right)
$$

Then, we obtain

$$
A(u) = \frac{-\kappa}{u^{2(1-\gamma)}}, \quad \gamma = \frac{-3 + \sqrt{9 + \frac{6M_{pl}^2}{f^2}}}{2}
$$

• If we ignore the slow-roll condition,

$$
\langle M_{\rm out}^2 \rangle = \left\{ \begin{aligned} &\text{converge} & f < \sqrt{\frac{6}{7}} M_{pl}, \\ &\text{diverge} & f \geq \sqrt{\frac{6}{7}} M_{pl} \end{aligned} \right.
$$

Summery

 \cdot The initial singularity causes at early stage of inflation.

 \rightarrow Do inflation models break down due to the singularity as EFT of string theory?

• We suggested the method to distinguish inflation models whether they break down or not due to the initial singularity.

• Stringy corrections should resolve the initial singularity even though the value of the Hubble parameter remains smaller than the string scale.

Outlook

• Calculate the time-dependence of the expectation value of mass (string excitation) without the contracting universe.

 \cdot Take into account a back reaction of the excitation.

Calculations

 \cdot $A(u)$ is calculated by potential $V(\phi)$.

$$
V(\phi) = 3M_{pl}^2 \bar{H}^2 (1 + \delta V(\phi))
$$

$$
A(u) = \frac{1}{a^2} \frac{dH}{dt} \simeq -\frac{M_{pl}^2}{2u^2} \times \delta V'(\phi(u))^2
$$

 \cdot EOMs of inflaton ϕ are

$$
\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0, \qquad H^2 = \frac{1}{3M_{pl}^2} \left(\frac{1}{2}\dot{\phi}^2 + V(\phi)\right)
$$