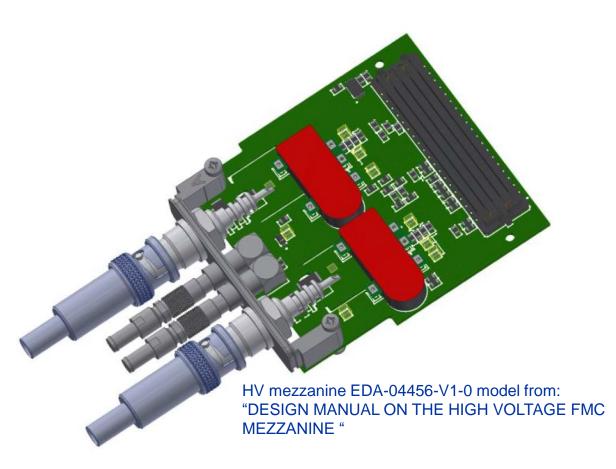


Algorithm to control the Dual Channel FMC High Voltage Supply EDA-04456

<u>J. Emery</u>, M. Saccani, W. Vigano' 08.06.2022

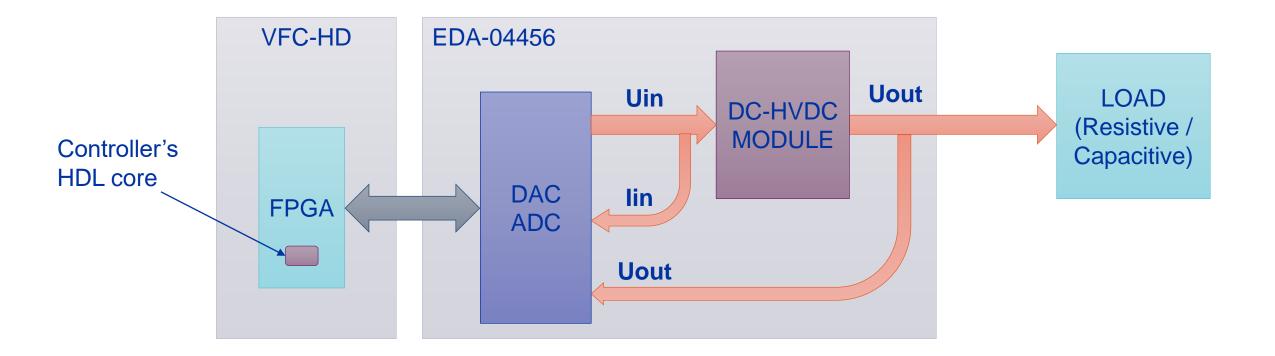
Algorithm to control the Dual Channel FMC High Voltage Supply EDA-04456

System description

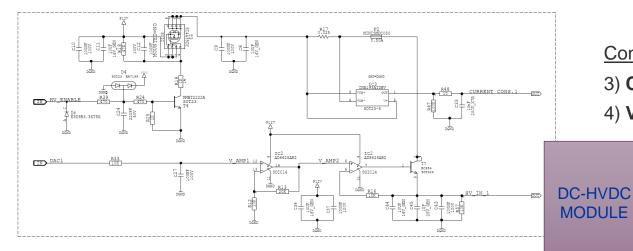

Problem definition

Algorithm specification

Modeling & simulation

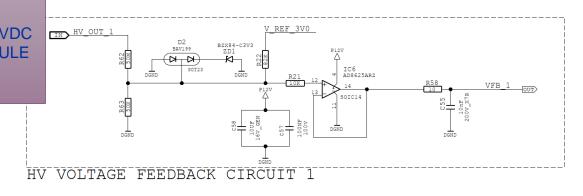

HDL implementation

Verification strategy

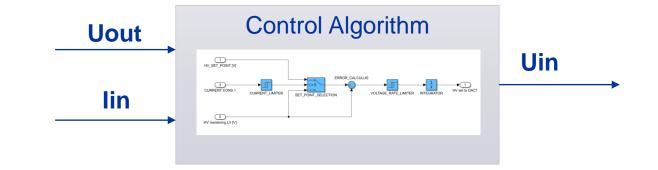


System architecture and controller's location

Electronics interfaces from the controller's viewpoint


Controller outputs:

- 1) HV ENABLE: ON/OFF switch to the bipolar
- => PWM modulation to set collector voltage of T7
- 2) **DAC1** : Analog voltage setting the emitter voltage Uin


Controller input

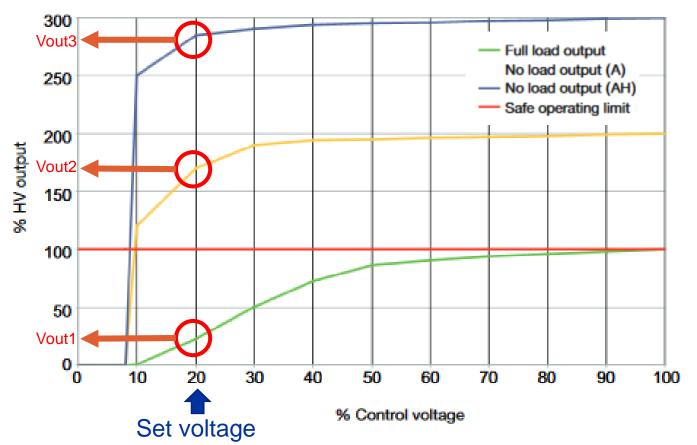
3) CURRENT CONS.1: Shunt voltage to sense current In

4) VFB_1: Voltage output measure Uout

During HW prototype validation (without feedback), W. Vigano' found that the PWM can be set to a fixed duty cycle => PWM control out of the controller

Problem definition: DC-HVDC MODULE

1. HV output vs ctrl voltage


It is load dependant. i.e., output current dependant

=> requires a voltage control based on feedback

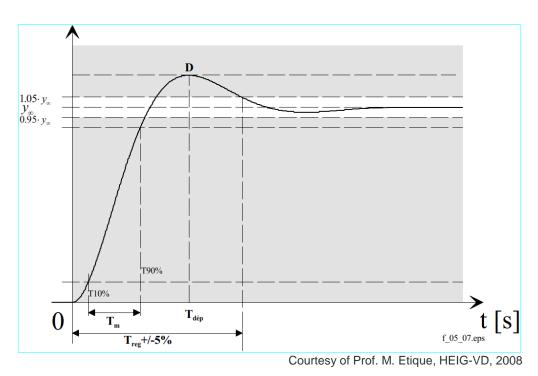
2. Safe operating limit easily reachable
When operating with low
impedance/capacitive load.
=> requires a voltage limit for a given
module

3. Output current limit => requires a monitoring of the current => if max current is reached, voltage should be limited while delivering the max current (e.g., capacitive load)

Model Number	Output Voltage	Output Current	Input Voltage	Input Current, No Load	Input Current, Full Load	Ripple
			1 Watt AG Models			
AG20P-5	0 to +2000V	0.5mA	5V	<300mA	<500mA	<0.3%
AG30N-12	0 to -3000V	0.33mA	12V	<100mA	<185mA	<0.3%
AG30N-5	0 to -3000V	0.33mA	5V	<300mA	<500mA	<0.3%
AG30N-5T	0 to -3000V	0.33mA	5V	<300mA	<500mA	<0.3%
AG30P-12	0 to +3000V	0.33mA	12V	<100mA	<185mA	<0.3%

Algorithm spec

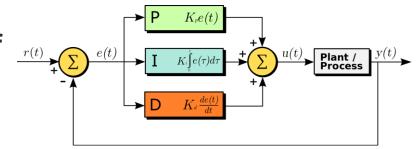
- Voltage feedback (HV module and load independent)
- Voltage limiter
- Current limiter
- Voltage rate selection
- Feedback loop period
- Coefficients editable

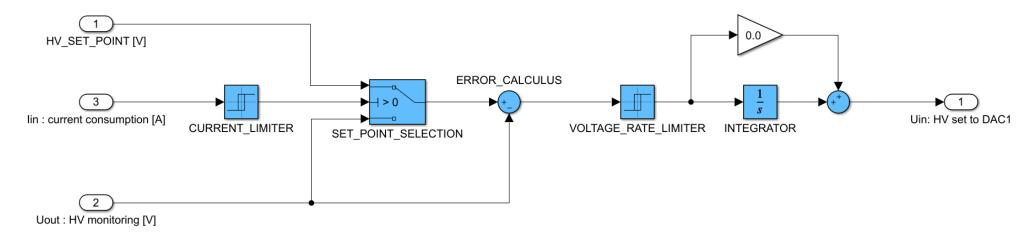

Settling time :

Treg should between 1s and 10s

Ripple :

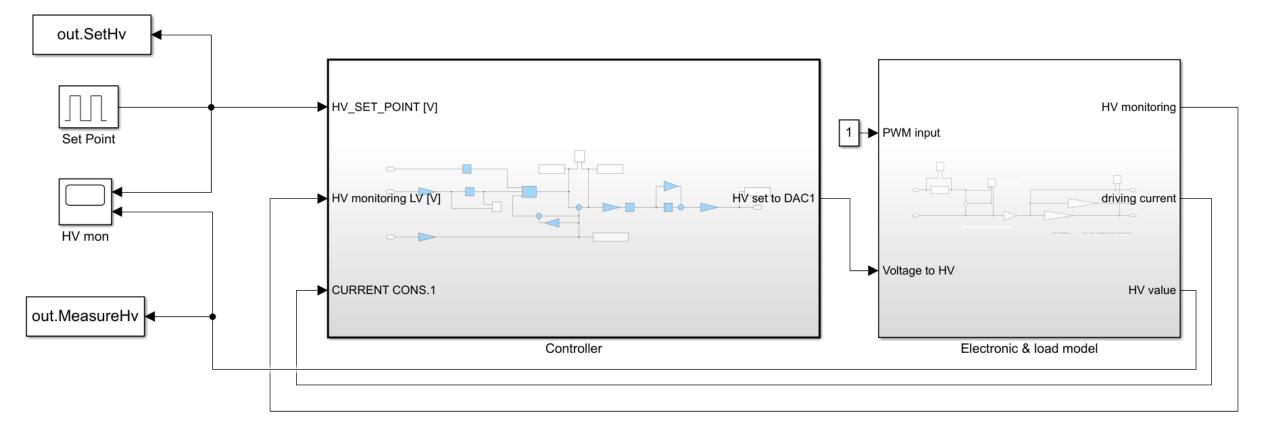
as low as possible to limit induced current in detectors => correction (the FB) could be turned off when HV ok! Loop period :


< 100ms (determined by HigRes ADC conv. time)

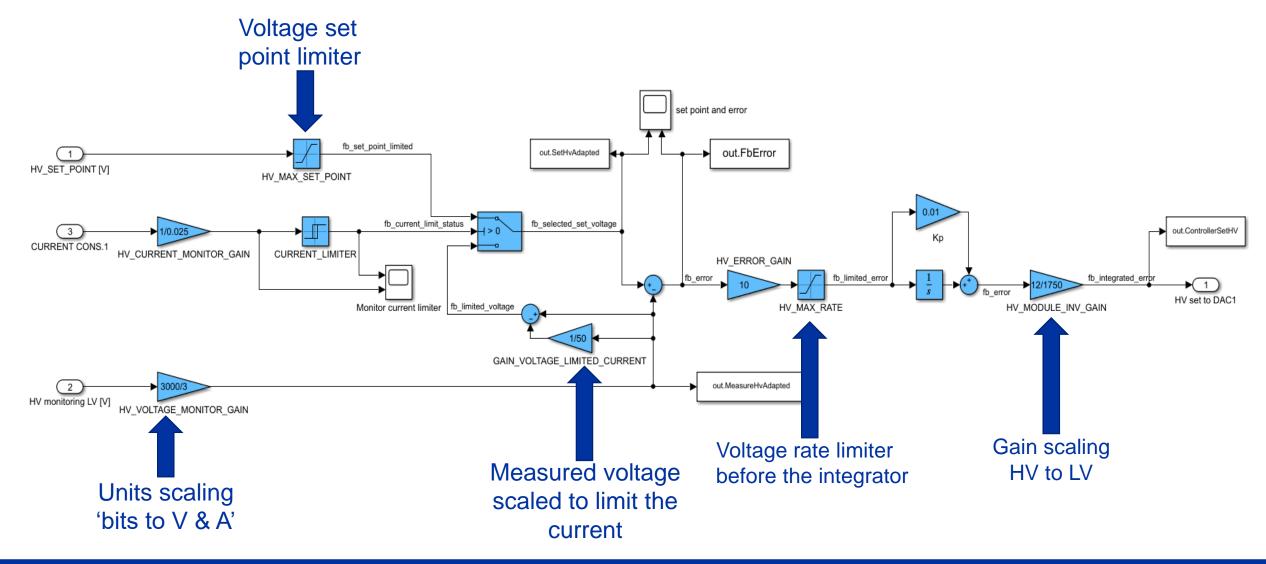


Control algorithm basic concept

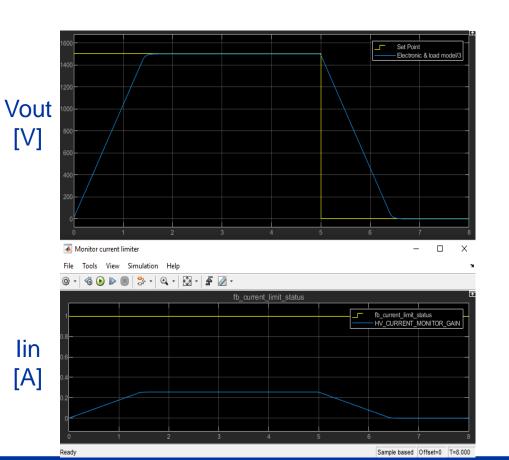
- A digital integrator accumulate error to set the HV module voltage input (limited steady state error)
- A proportional term can be set to improve performance if required (! stability vs performance !)
- The error limiter defines the maximum voltage rate
- Current limiter switch the voltage set point to current voltage (minus a defined portion)

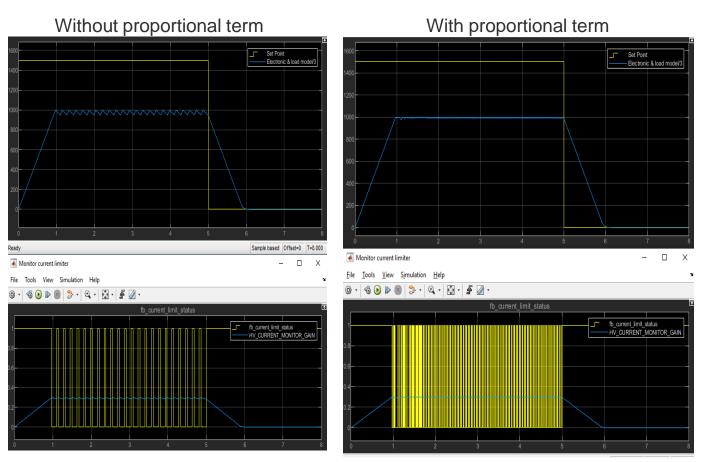


PID controller structure (Wikipedia)


Algorithm modeling & simulation

MatLab/Simulink modeling of the controller and the load


Controller modeling



Control algorithm: simulation examples

Set point 1500V HV error rate limit : 1000V/s load below max current

Set point: 1500V HV error rate limit: 500V/s load is above limit current limits: thresholds (with hysteresis) 0.3V and 0.28V

VHDL implementation

Follows the Simulink modeling

Fixed point arithmetic set to 32 bits (16, 16) via IEEE library 'ieee_proposed' (for Quartus synthesis) but can be increased via generic param. Resolution internal calculation: 15.3 uV / uA

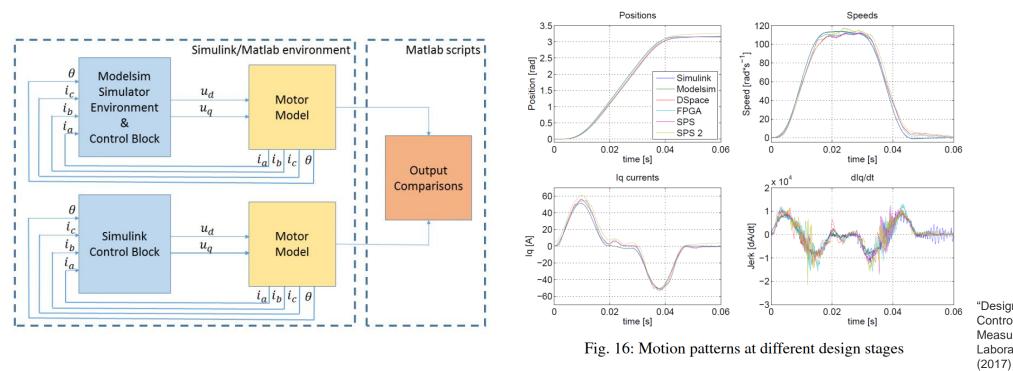
Components reuse from BWS project

- input scaling to sfixed
- proportional Integral (PI) core
- comparator for current monitoring

Internal feedback coefficients in registers (settable on the fly)

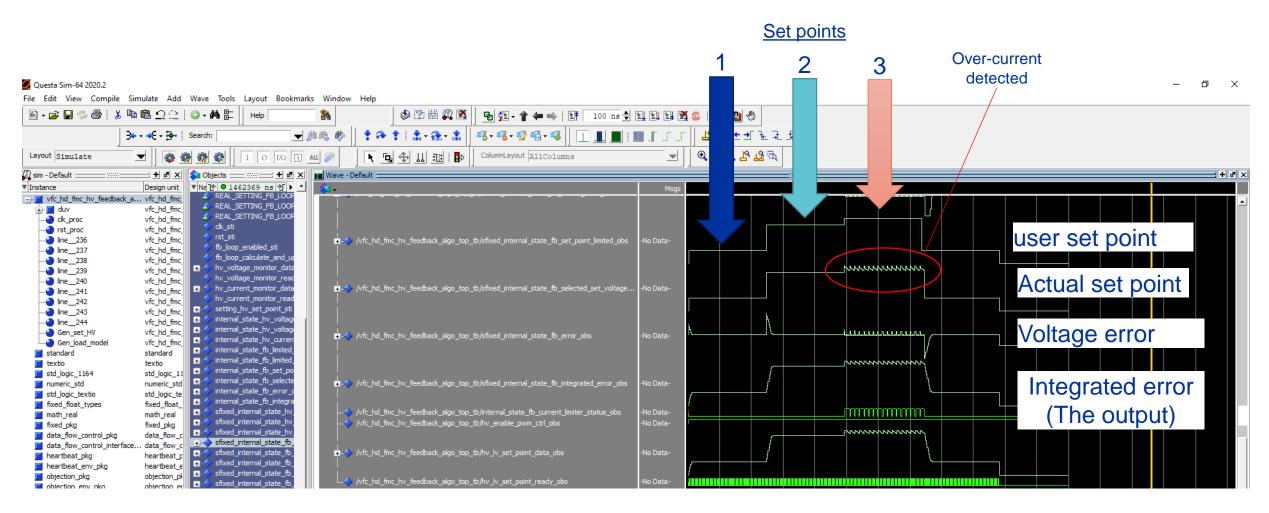
Feedback loop update externally triggered (user can vary the feedback period if needed)

Internal states outputted to monitor via registers or connected to memory (monitoring of fast signals)


entity vfc_hd_fmc_hv_feedback_algo_top is	
generic(
TOP FIXPT SIZE HIGH	: integer := 16;
TOP FIXPT SIZE LOW	: integer := -16;
SETTING HV VOLTAGE MONITOR GAIN	: real := 4.0*1750.0; 0.000
SETTING HV CURRENT MONITOR GAIN	
FEEDBACK_LOOP_PERIOD_IN_S	: real := 5.0; curre. : real := 0.1 scali
port (
Clock % Reset	
clk i	: in std logic;
rstī	: in std logic;
Inputs	
fb loop enabled i	: in std logic; when 0, set all o
fb loop calculate and update output i	: in std logic; pulse (1 clk i le.
settings	
setting hv set point i	: in std logic vector(31 downto 0); s.
setting hv max set point i	: in std_logic_vector(31 downto 0); s
setting fb loop hv error gain i	: in std logic vector(31 downto 0); s
setting_fb_loop_hv_max_rate_i	: in std_logic_vector(31 downto 0); s.
setting_fb_loop_hv_module_inv_gain_i	: in std_logic_vector(31 downto 0); s
setting fb loop hv current limit hyst high i	: in std_logic_vector(31 downto 0); s.
setting_fb_loop_hv_current_limit_hyst_low_i	: in std_logic_vector(31 downto 0); s.
setting_fb_loop_hv_gain_to_hv_monitor_when_in_cur_limt_i	
signals from intenal calculations	
internal_state_hv_voltage_set_point	<pre>: out sensor_processed_type;</pre>
internal_state_hv_voltage_in_volts	<pre>: out sensor_processed_type;</pre>
internal_state_hv_current_in_amps	<pre>: out sensor_processed_type;</pre>
internal_state_fb_limited_voltage	<pre>: out sensor_processed_type;</pre>
internal_state_fb_limited_error	<pre>: out sensor_processed_type;</pre>
internal_state_fb_set_point_limited	<pre>: out sensor_processed_type;</pre>
internal_state_fb_selected_set_voltage	<pre>: out sensor_processed_type;</pre>
internal_state_fb_error	<pre>: out sensor_processed_type;</pre>
internal_state_fb_integrated_error	<pre>: out sensor_processed_type;</pre>
internal_state_fb_current_limiter_status	: out std_logic;
analog world inputs	
hv_voltage_monitor_data_i	: in std_logic_vector(23 downto 0);
hv_voltage_monitor_ready_i	: in std_logic;
hv_current_monitor_data_i	: in std_logic_vector(11 downto 0);
hv_current_monitor_ready_i	: in std_logic;
analog world outputs	
hv_enable_pwm_ctrl_o	: out std_logic;
hv_lv_set_point_data_o	: out std_logic_vector(15 downto 0);
hv_lv_set_point_ready_o	: out std_logic
-);	
<pre>end vfc_hd_fmc_hv_feedback_algo_top;</pre>	

Verification strategy

Individual cores have simple unit tests (but could be improved for automation)
 Overall functional test bench in place to visualize use case
 Next steps:


- setup co-simulation within Simulink as for BWS feedbacks (2017)
- integrate code to the Board Support Package (M. Saccani) and test in the lab
- tune feedback coefficients with various load and define a range of 'robust' values

Reference: "Design and Validation Methodology of the Control System for a Particle Beam Size Measurement Instrument at the CERN Laboratory", American Control Conference (2017)

'Functional' Simulation: visual example

Summary

- A digital controller for the HV mezzanine has been designed
- Voltage feedback mode with current limiter
- MatLab/Simulink modeling shows promising behavior
- HDL implementation with fixed point arithmetic
- User will have access to internal coefficients
- Feedback loop period is user actionable, allowing to start-stop
- <u>Next steps:</u>
 - Co-simulation MatLab/Simulink
 - Offset suppression on the measured inputs
 - Integration algorithm into the Board Support Package of M. Saccani
 - Test and optimise feedback on the physical prototype
 - Tune feedback coefficients with various load and define a range of 'robust' values
 - Validate and report performance
 - investigate into corrector action at settled voltage (reduce controller induced ripple)

home.cern

Functional simulation Generics

entity vfc_hd_fmc_hv_feedback_algo_top_tb is

SIMULATION RELATED GENERICS OUTFOLDER	: STRING	:= "";
FILE PREFIX	: STRING	:= "";
	. binino	. ,
NBR CLK PER FB LOOP	: natural	:= 100;
NBR_CLK_PER_LOAD_UPDATE	: natural	
DCDC MODULE TIME CST IN LOAD UPDATE	: real	:= 0.1; 10 loop period to reach the valu
DCDC MODULE GAIN WITH DRIVE CIRCUIT	: real	:= 7.5/2.5*2000.0/7.5;
DCDC MODULE LOAD RESISTIVE	: real	$:= 1500.0 \times 22.0; 22mA \text{ at } 1500.0V$
HV_MON_VOLTAGE_LSB_IN_V	: real	:= 0.000310440;
HV MON CURRENT LSB IN I	: real	:= 0.0000763;
current offset=2000 #uA conv_fact=7630 ALGO CORE RELATED GENERICS	#uA/1sb	
current offset=2000 #uA conv_fact=7630	#uA/lsb	
current offset=2000 #uA conv_fact=7630 ALGO CORE RELATED GENERICS	#uA/1sb	:= 16;
current offset=2000 #uA conv_fact=7630 ALGO CORE RELATED GENERICS TOP_FIXPT_SIZE_HIGH TOP_FIXPT_SIZE_LOW	#uA/lsb : integer : integer	:= 16; := -16;
current offset=2000 #uA conv_fact=7630 ALGO CORE RELATED GENERICS TOP_FIXPT_SIZE_HIGH TOP_FIXPT_SIZE_LOW	#uA/lsb : integer : integer : real	:= 16; := -16; := 0.1;
current offset=2000 #uA conv_fact=7630 ALGO CORE RELATED GENERICS TOP_FIXPT_SIZE_HIGH TOP_FIXPT_SIZE_LOW FEEDBACK_LOOP_PERIOD_IN_S	#uA/lsb : integer : integer : real	:= 16; := -16; := 0.1;
current offset=2000 #uA conv_fact=7630 ALGO CORE RELATED GENERICS TOP_FIXPT_SIZE_HIGH TOP_FIXPT_SIZE_LOW FEEDBACK_LOOP_PERIOD_IN_S SETTING_HV_VOLTAGE_MONITOR_GAIN SETTING_HV_CURRENT_MONITOR_GAIN	#uA/lsb : integer : integer : real : real	:= 16; := -16; := 0.1; := 3.0*1750.0;
current offset=2000 #uA conv_fact=7630 ALGO CORE RELATED GENERICS TOP_FIXPT_SIZE_HIGH TOP_FIXPT_SIZE_LOW FEEDBACK_LOOP_PERIOD_IN_S SETTING_HV_VOLTAGE_MONITOR_GAIN SETTING_HV_CURRENT_MONITOR_GAIN	<pre>#uA/lsb : integer : integer : real : real : real : real : real : real</pre>	:= 16; := -16; := 0.1; := 3.0*1750.0; := 0.3;
current offset=2000 #uA conv_fact=7630 ALGO CORE RELATED GENERICS TOP_FIXPT_SIZE_HIGH TOP_FIXPT_SIZE_LOW FEEDBACK_LOOP_PERIOD_IN_S SETTING_HV_VOLTAGE_MONITOR_GAIN SETTING_HV_CURRENT_MONITOR_GAIN REAL_SETTING_HV_MAX_SET_POINT REAL_SETTING_FB_LOOP_HV_ERROR_GAIN REAL_SETTING_FB_LOOP_HV_MAX_RATE	<pre>#uA/lsb : integer : integer : real : real</pre>	<pre>:= 16; := -16; := 0.1; := 3.0*1750.0; := 0.3; := 1750.0;</pre>
current offset=2000 #uA conv_fact=7630 ALGO CORE RELATED GENERICS TOP_FIXPT_SIZE_HIGH TOP_FIXPT_SIZE_LOW FEEDBACK_LOOP_PERIOD_IN_S SETTING_HV_VOLTAGE_MONITOR_GAIN SETTING_HV_CURRENT_MONITOR_GAIN REAL_SETTING_HV_MAX_SET_POINT REAL_SETTING_FB_LOOP_HV_ERROR_GAIN REAL_SETTING_FB_LOOP_HV_MAX_RATE	<pre>#uA/lsb : integer : integer : real : real</pre>	
current offset=2000 #uA conv_fact=7630 ALGO CORE RELATED GENERICS TOP_FIXPT_SIZE_HIGH TOP_FIXPT_SIZE_LOW FEEDBACK_LOOP_PERIOD_IN_S SETTING_HV_VOLTAGE_MONITOR_GAIN SETTING_HV_CURRENT_MONITOR_GAIN REAL_SETTING_HV_MAX_SET_POINT REAL_SETTING_FB_LOOP_HV_ERROR_GAIN	<pre>#uA/lsb : integer : integer : real : real</pre>	$ \begin{array}{l} := & 16; \\ := & -16; \\ \vdots = & 0.1; \\ := & 3.0 \times 1750.0; \\ := & 0.3; \\ \vdots = & 1750.0; \\ := & 10.0; \\ := & 2000.0; \end{array} $
current offset=2000 #uA conv_fact=7630 ALGO CORE RELATED GENERICS TOP_FIXPT_SIZE_HIGH TOP_FIXPT_SIZE_LOW FEEDBACK_LOOP_PERIOD_IN_S SETTING_HV_VOLTAGE_MONITOR_GAIN SETTING_HV_CURRENT_MONITOR_GAIN REAL_SETTING_HV_MAX_SET_POINT REAL_SETTING_FB_LOOP_HV_ERROR_GAIN REAL_SETTING_FB_LOOP_HV_MAX_RATE REAL_SETTING_FB_LOOP_HV_MODULE_INV_GAIN	<pre>#uA/lsb : integer : integer : real : real</pre>	$ \begin{array}{l} := & 16; \\ := & -16; \\ \vdots = & 0.1; \\ := & 3.0 \times 1750.0; \\ := & 0.3; \\ \vdots = & 1750.0; \\ := & 10.0; \\ := & 10.0; \\ := & 2000.0; \\ := & 1.0/3000.0; \end{array} $

end vfc_hd_fmc_hv_feedback_algo_top_tb;

