

Mentee: Amani Midgette (Howard University) Mentor: Fengwangdong Zhang (University of California)

01 Overview

Overview

- 1. Introduction
- 2. The CMS Detector
- 3. Data and Simulated Events
- 4. Event reconstruction
- 5. Measurement of the τ h identification efficiency
- 6. Measurement of the misidentification probability
- 7. Conclusion

O2 Abstract

Abstract

Abstract: The algorithm developed by the CMS Collaboration to reconstruct and identify τ leptons produced in proton-proton collisions, via their decays to hadrons and a neutrino, has been significantly improved. The changes include a revised reconstruction of π 0 (pi null) candidates, and improvements in multivariate discriminants to separate τ leptons from jets and electrons. The algorithm is extended to reconstruct τ leptons in highly Lorentz-boosted pair production, and in the high-level trigger. The performance of the algorithm is studied using proton-proton collisions recorded during 2016. The performance is evaluated in terms of the efficiency for a genuine τ lepton to pass the identification criteria and of the probabilities for jets, electrons, and muons to be misidentified as τ leptons.

O3 Introduction

Introduction

- Higgs Bosons
 - O W and Z
 - O Excitation of the Higgs field
 - O Very short ½ half-life
 - O By measuring collision proceties we can learn more about the bossons
- Particle Decay
 - O Decay of Higgs Bosons to two τ leptons which creates a unique channel of Higgs Bosons coupling to fermions
 - O Higgs Bosons decay to fermion pairs

04 Work To Do

Work to Do

- Detection of τ leptons into hadrons and neutrinos partners is difficult as they are simultaneously produced with quark and gluon jets, which are also produced in pp collisions.
- Using the recorded proton-proton collisions recorded in 2016 we are able to analyze these events and by utilizing the Tag and Probe approach we are able to reconstruct the identification algorithm.
- In this work we look to have an high efficiency algorithm which identifies the τ leptons into hadrons and neutrinos corresponding with the Standard Model

05 Methods

Methods

CMS Detector

- O The decay of τ leptons into hadrons and neutrinos are identified using the hadrons-plus-strips (HPS) algorithm
- O The detector improves the HPS algorithms detection by combining information from the trajectory of the decays produced by the proton-proton collisions
- 1. Modification of the strip reconstruction algorithm to collect the tau decay products and data more efficiently
- 2. Improvement to the multivariable based discriminant that reduces the false detection of jets by combining all gathered information regarding the decaying τ leptons
- 3. Improvements to the MVA-based discriminant this ensures lower misidentification of τ leptons into hadrons and neutrinos

Methods

• Root Files

• Tag and Probe

- O Reference particle (tag)
- O Measured particle (probe)
- O Discriminant information
- O Discriminate between 0 and 1 which assess the level of tau identification
- O "Training" sample which learns the behaviors of various particle specific collisions
- O Measuring using real and simulated energy
- Challenges
 - O Distinguish these objects from quark and gluon jets, which are also produced in pp collisions.

Thank You!