
Implementing Tracing to Monitor Job Execution in 

GlideinWMS

Mentee: Ralph Ortiz (Arizona State)

Mentor: Marco Mambelli



GlideinWMS is a workload management system allowing experiments like CMS, DUNE and 
others to access and efficiently use vast amounts of computing resources. CMS uses at any 
given time hundreds of thousands of CPUs for its simulations and analyses, with peaks over a 
million. And GlideinWMS provisions the required resources, using local or remote batch farms, 
private and commercial clouds, and supercomputing centers. The Glidein, or pilot job, is a very 
important component of GlideinWMS: it tests and sets up the computing nodes and makes them 
available for the scientific computations. 

This project aims to extend the GlideinWMS monitoring to include tracing and to evaluate 
optimizations. Compared to standard monitoring or logging, tracing encompasses a much wider, 
continuous view of an application. The goal of tracing is to follow the Glidein flow and data 
progression, producing a lot of information. This activity includes extending the Glidein 
monitoring framework, instrumenting the Glideins with tracing software, and analyzing the traces 
with statistical and ML techniques to understand in more detail the Glidein behavior and to 
suggest optimizations.

Abstract



1. Introduction

2. GlideinWMS

3. Jaeger / Open Telemetry

4. Glidein and Jobs 

instrumentation

5. Traces collection

6. Data analysis

7. Python / Shell

8. Conclusions

Overview



Understand the Virtual Machine via Shell

Propose a tracing infrastructure

where will the Jaeger agent run? 

What services will be involved (such as Open Telemetry)?

and implementation

How will trace IDs be propagated?

Trace sampling strategy?

Implement tracing for Glideins

Collect traces, analyze samples, propose workflow optimizations

To Dos



● Run test jobs through FermiCloud Virtual Machines

● Track traces of jobs in Jaeger

● Plan code and architecture modifications

● Develop in Python and Shell using GitHub to collaborate

● Deploy

● Collect trace information

● Analyze and suggest optimizations

Method


