
Introducing GPUs for
Electron/Photon Reconstruction

Gabriel Soto, Intern, Fresno State, and Charis Kleio
Koraka, Mentor, University oF Wisconsin-Madison

Overview

● The LHC and the CMS detector
● Electron and photon reconstruction
● GPU vs CPU hardware
● Technical details
● Histograms
● Conclusion

2

The LHC

● Worlds largest and most powerful
particle collider.

● Consists of four main detectors:
CMS, ATLAS, ALICE, and LHCb.

● Highest recorded beam energy is
13.6 TeV.

3

CMS Detector
● CMS detector is one of the largest

particle detectors built.
● Detector itself consists of several

different sub-detectors such as
calorimeters and trackers, each with
a specific job.

○ Pixel Tracker
○ ECAL
○ HCAL
○ Muon Detectors
○ Superconducting Solenoid
○ Preshower

● Electromagnetic calorimeter (ECAL)
is the calorimeter within the detector
that detects electrons and photons.

● The magnet between calorimeter and
the muon chambers with a strength
of 3.8 T.

4

Event reconstruction
Different particles leave traces in different detectors:

● First, particles pass through the tracker which identifies
charged particle trajectories.

● Second it passes through the ECAL. Electrons and photons
are stopped here.

● If a particle is not a photon or an electron it will continue
throughout the detector to the HCAL

● Muons are minimum ionizing particles and are detected using
the muon chambers.

Information from all detectors is used to reconstruct the particles

● The software used is CMSSW.
● Different algorithms are employed (i.e. particle flow) to

reconstruct different quantities

5

Electron reconstruction
For the electron reconstruction information from the tracker and the ECAL is used :

● ElectroMagnetic Calorimeter (ECAL) :
○ This is where electrons and photons deposit all of their energy.
○ The energy deposited within the detector crystals can form an ECAL

cluster.
○ Then Super Clusters (SCs) are formed as a big group of clusters using

the Mustache Algorithm.
● Tracker:

○ Is a silicon tracker that measures charged particles within |η| < 2.5.
○ Is composed by silicon pixels and strips.

6

Seeds

What are the electron seeds?

● Seeds are hits in a given area within the tracker that are used as input in
tracking algorithms. Electron seeds are hits that could potentially be originating
from an electron and lie on the electron trajectory.

Why do we need seeds?

● Tracking algorithms are computationally intensive(GSF) so we cannot use
every single tracker hit.

7

Electron Seeding and How it is Done
● Reconstruction of an electron track begins with the

identification of a hit pattern that may lie on an electron
trajectory.

● Electron trajectory seeds can be ECAL or tracker-driven
(ECAL approach is better at high energy).

● ECAL driven seeds select mustache SC’s with energy >
4GeV and with a cone of ΔR=0.15 centered at the SC
position.

● For each SC a trajectory is hypothesized, for either a electron
or a positron:
○ If we find a tracker hit along the hypothesized trajectory,

then these hits that are identified as electron seeds and
are used as inputs in the GSF tracking algo.

8

9

Graphics Processing Unit (GPU)

10

CPUs vs GPUs

CPU
● Uses only a few cores
● Can run complex tasks
● Cannot run many tasks in

parallel
● Low latency

GPU
● Uses thousands of cores
● Runs simple tasks
● Can run many tasks in parallel
● High throughput

11

Computing at the High Luminosity-LHC
What we expect:

● 2-3 times greater instantaneous luminosity
compared to Run-2.

● Much larger event processing rate.
● Unique challenge for online and offline event

reconstruction.

How to mitigate this:

● Use of different co-processors designed to handle
specific tasks in parallel.

● Current software should be adapted to run on
such systems.

12

[link]

[link]

https://espace.cern.ch/HiLumi/WP2/Wiki/HL-LHC%20Parameters.aspx
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Technical Details

13

How to Get Environment Setup
Connect to lxplus

Create a directory to work in:
mkdir myDirectory
cd myDirectory

Download a CMSSW release and add the relevant packages in working area:
cmsrel CMSSW_12_4_0
cd CMSSW_12_4_0/src
cmsenv # This commands sets the environment variables in order to run cmssw code
git cms-addpkg RecoEgamma/EgammaElectronProducers
git cms-addpkg DataFormats/EgammaReco
git cms-addpkg RecoEgamma/EgammaElectronAlgos/
git cms-checkdeps -a

14

Running

Copy in directory:
https://cernbox.cern.ch/index.php/s/rfAU9SLQy4JRVap

Run the config:
cmsRun step1.py #this returns a new root file called step0_HTL.root which starts
from a raw file and runs the High Level Trigger (HLT) step.

15

https://cernbox.cern.ch/index.php/s/rfAU9SLQy4JRVap

Using Resulting Files
Clone repository:

git clone git@github.com:ckoraka/egProducer.git

mv step1_HLT.root egProducer/Producer/test/

Recompile:

scram b -j 8

Run Producer:

cd egProducer/Producer/test

cmsRun eganalyzer_cfg.py #This should output a root file. This runs over the output of the previous step.

16

mailto:git@github.com

Histograms

17

Simulations
Three ROOT simulations were used:

● ttbar
● Z → e e
● ttbar → Di-Lepton

Number of Events:

● 2000

18

Electron pt Normalized
● The electron pt spectrum is

harder for the Z → ee
simulation compared to the
ttbar simulations.

● In the tt simulation, this is due
to electrons originating from
the W boson, which is lighter
than the Z boson, that are
produced along with an
electron neutrino.

● Histograms are normalized to
area.

19

Electron eta and phi Normalized

20

Di-Electron Invariant Mass Normalized

● For the Z → ee
simulation, we expect a
peak at 90 GeV, which is
the Z boson mass. For
the ttbar simulation, we
do not expect any peak.

21

Number of Electrons per Event Normalized

● For ttbar, it is know that 99.9% of
the time it decays into a W boson
and a b quark. The W boson does
not always decay into a lepton and
lepton neutrino pair, so there is a
difference between ttbar and ttbar
→ dilepton.

● The Z → ee simulation, for each
event we expect 2 electron. This is
why the peak is shifted with respect
to the ttbar simulations.

22

Improving Electron Seeding via Parallelization
● Inside the script that performs the electron seeding, we can write a Kernel that would assign a tracker hit and ECAL

supercluster to a different GPU thread.
● The first part we identified that can be parallelized is the loop over the different ECAL SCs as shown below :

● Additionally, for each SCs, a loop over the collection of tracker hits is performed. Therefore each hit, is checked whether
it geometrically agrees with the hypothesized electron trajectory. This part can be parallelized as well :

23

Conclusions

● Electron reconstruction is a major part of the CMS reconstruction
software.

● With the expected increase in luminosity, more efficient algorithms and
new types of hardware, such as GPUs, should be explored.

● A description of the electron seeding algorithm and its potential to be
adapted to run on GPUs was described.

● Implementation of this will hopefully result to a speed up of the
reconstruction software.

24

Results of Internship

● Worked remotely on daily basis with CMS physicists, PhD students,
and post-docs.

● Learned new methods of critical thinking, technical details of GPUs vs
CPUs, and a new coding language called CUDA.

● Strengthen my knowledge on particle detectors, ROOT, C++, python,
troubleshooting code, and github.

● Gained a good relationship with Dr. Charis Kleio Koraka.
● Paid a total of $6000.

25

Citation

● Electron and photon reconstruction and identification with

the CMS experiment at the CERN LHC. (2021).

IOPscience.

https://iopscience.iop.org/article/10.1088/1748-0221/16/

05/P05014.

26

BACK - UP

27

Algorithm Version-How do we match the trajectories and the hits?

● Tracks are evaluated using the Kalman Filter(KF) algorithm to create an
electron trajectory.

● KF proceeds iteratively from the seed layer, starting from a rough estimate of the
track parameters provided by the seed. It also includes the information of the
succeeding detection layers one by one.

● While taking into account the electron energy loss using Bethe-Heitler
Distribution.

● If the algorithm finds hits that satisfy the track, it creates candidate trajectories
by using a Chi-squares fit.

● Penalties are applied to the Chi-squared when there are missed hits.
● This helps minimize the inclusion of bremsstrahlung photons in hits of the

electron trajectory.

28

Physics Version(ECAL)

● When high energy particles are flying towards the ECAL, if the particle is an
electron, positron, or a photon the particle is stopped by the ECAL
detector.Why?

● A calorimeter measures the energy a particle loses as it passes through. It is
usually designed to stop entirely or “absorb” the particles coming from a
collision.

● They are usually made up of very dense material.
● This forces them to deposit all of their energy within the detector, thus

measuring their full energy.
● Electromagnetic calorimeters measure the energy of electrons and photons as

they interact with the electrically charged particles in matter.

29

ttbar simulation

● t quark first viewed by Kadanoff and Ceva in 1971.
● Most massive quark.
● Interacts via with all forces, but can only decay through weak interactions.
● Top decays ~99.9% into W boson and b quark (rarely a strange quark, or a

down quark).
● Lifetime ~5×10−25 s.
● W can decay into many different combinations, lepton and antilepton or quark

and antiquark.

30

Altering Prebuilt Code

There were a few instances where the code was not being built or compiled
correctly. This resulted in having to manually modify the code.

● Changing certain paths in egammaProducer.cc that were called on.
● Changing the number of events in step1_HLT.py to add better better statistics.

31

Troubleshooting

When running the code I ran into issues with the building code. It would save and
modify the current build information.

Terminal commands:

rm -rf * (after entering the CMSW_12_4_0/python directory)

scram b clean

32

Initializing Variables from the Output ROOT File
Create python file:

nano output.py

Input this code:
import ROOT

import numpy as np

f1 = ROOT.TFile("output.root", "OPEN")

NBin = 13

binning =
np.array((0.,15.,30.,45.,60.,75.,90.,105.,120.,135.,1
50.,165.,180.,195.))

h0 = ROOT.TH1F("h0","NUmber of Elecrons", 5, 0, 5)

h1 = ROOT.TH1F("h1",";pT [GeV];410/15 ",NBin,binning)

h2 = ROOT.TH1F("h2","Electron phi",10,-4,4)

h3 = ROOT.TH1F("h3","Electron eta",10,-4,4)

h5 = ROOT.TH1F("h5","Di-Electron invariant
mass",10,0,100)

electron1 = ROOT.TLorentzVector()

electron2 = ROOT.TLorentzVector()

eTot = ROOT.TLorentzVector()

h5.Fill(eTot.M())

33

Filling Histograms
for evt in f1.Get("egammaReconstruction/tree"):

 h0.Fill(len(evt.electron_pt))

 for i in range(0,len(evt.electron_pt)):

 h1.Fill(evt.electron_pt[i])

 h2.Fill(evt.electron_phi[i])

 h3.Fill(evt.electron_eta[i])

 if(len(evt.electron_pt) < 2):

 continue

 electron1.SetPtEtaPhiE(evt.electron_pt[0], evt.electron_eta[0], evt.electron_phi[0], evt.electron_energy[0])

 electron2.SetPtEtaPhiE(evt.electron_pt[1], evt.electron_eta[1], evt.electron_phi[1], evt.electron_energy[1])

 eTot = electron1 + electron2
34

Drawing Histogram and Canvas then Saving it

c0 = ROOT.TCanvas("c0","c0",1000,1000)
h0.SetTitle("CMS Simulation Run3 (13.6 TeV)")
h0.GetXaxis().SetTitle("Number of ELectrons")
h0.GetYaxis().SetTitle("Events")
h0.Draw("HIST")
h0.Draw("C9E1 SAME")
l0 = ROOT.TLegend(0.8, 0.7, 0.95, 0.75)
l0.AddEntry(h0, "ttbar", "l")
l0.Draw()
c0.Update()
c0.Draw()
c0.SaveAs("Number_Electron.png")

35

Finishing up Histograms and Closing File

c5 = ROOT.TCanvas("c5","c5",1000,1000)
h5.SetTitle("CMS Simulation Run3 (13.6 TeV)")
h5.GetXaxis().SetTitle("Di-Electron Invariant Mass [GeV]")
h5.GetYaxis().SetTitle("Events")
h5.Draw("HIST")
h5.Draw("C9E1 SAME")
l5 = ROOT.TLegend(0.8, 0.7, 0.95, 0.75)
l5.AddEntry(h5, "ttbar", "l")
l5.Draw()
c5.Update()
c5.Draw()
c5.SaveAs("Electron_Di-Electron.png")
f1.Close()

This process was used
repeatedly used for all
histograms. Up until we
finished and closed the code
as shown in this block of code.

36

