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The LHC 

● Worlds largest and most powerful 
particle collider.

● Consists of four main detectors: 
CMS, ATLAS, ALICE, and LHCb.

● Highest recorded beam energy is 
13.6 TeV.
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CMS Detector
● CMS detector is one of the largest 

particle detectors built.
● Detector itself consists of several 

different sub-detectors such as  
calorimeters and trackers, each with 
a specific job.

○ Pixel Tracker
○ ECAL
○ HCAL
○ Muon Detectors 
○ Superconducting Solenoid
○ Preshower

● Electromagnetic calorimeter (ECAL) 
is the calorimeter within the detector 
that detects electrons and photons.

● The magnet between calorimeter and 
the muon chambers with a strength 
of 3.8 T.
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Event reconstruction
Different particles leave traces in different detectors:

● First, particles pass through the tracker which identifies 
charged particle trajectories.

● Second it passes through the ECAL. Electrons and photons 
are stopped here.

● If a particle is not a photon or an electron it will continue 
throughout the detector to the HCAL

● Muons are minimum ionizing particles and are detected using 
the muon chambers.

Information from all detectors is used to reconstruct the particles 

● The software used is CMSSW.
● Different algorithms are employed (i.e. particle flow ) to 

reconstruct different quantities
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Electron reconstruction
For the electron reconstruction information from the tracker and the ECAL is used :

● ElectroMagnetic Calorimeter (ECAL) :
○ This is where electrons and photons deposit all of their energy.
○ The energy deposited within the detector crystals can form an ECAL 

cluster.
○ Then Super Clusters (SCs) are formed as a big group of clusters using 

the Mustache Algorithm.
● Tracker: 

○ Is a silicon tracker that measures charged particles within |η| < 2.5.
○ Is composed by silicon pixels and strips.
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Seeds

What are the electron seeds?

● Seeds are hits in a given area within the tracker that are used as input in 
tracking algorithms. Electron seeds are hits that could potentially be originating 
from an electron and lie on the electron trajectory.

Why do we need seeds?

● Tracking algorithms are computationally intensive(GSF) so we cannot use 
every single tracker hit. 
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Electron Seeding and How it is Done
● Reconstruction of an electron track begins with the 

identification of a hit pattern that may lie on an electron 
trajectory.

● Electron trajectory seeds can be ECAL or tracker-driven 
(ECAL approach is better at high energy).

● ECAL driven seeds select mustache SC’s with energy > 
4GeV and with a cone of ΔR=0.15 centered at the SC 
position.

● For each SC a trajectory is hypothesized, for either a electron 
or a positron:
○ If we find a tracker hit along the hypothesized trajectory, 

then these hits that are identified as electron seeds and 
are used as inputs in the GSF tracking algo. 
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Graphics Processing Unit (GPU)
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CPUs vs GPUs

CPU
● Uses only a few cores
● Can run complex tasks
● Cannot run many tasks in 

parallel
● Low latency

GPU
● Uses thousands of cores
● Runs simple tasks
● Can run many tasks in parallel
● High throughput
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Computing at the High Luminosity-LHC
What we expect:

● 2-3 times greater instantaneous luminosity 
compared to Run-2.

● Much larger event processing rate.
● Unique challenge for online and offline event 

reconstruction.

How to mitigate this:

● Use of different co-processors designed to handle 
specific tasks in parallel.

● Current software should be adapted to run on 
such systems.
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https://espace.cern.ch/HiLumi/WP2/Wiki/HL-LHC%20Parameters.aspx
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults


Technical Details
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How to Get Environment Setup
Connect to lxplus

Create a directory to work in:
mkdir myDirectory 
cd myDirectory

Download a CMSSW release and add the relevant packages in working area:
cmsrel CMSSW_12_4_0
cd CMSSW_12_4_0/src
cmsenv  # This commands sets the environment variables in order to run cmssw code
git cms-addpkg RecoEgamma/EgammaElectronProducers  
git cms-addpkg DataFormats/EgammaReco
git cms-addpkg RecoEgamma/EgammaElectronAlgos/
git cms-checkdeps -a
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Running

Copy in directory:
https://cernbox.cern.ch/index.php/s/rfAU9SLQy4JRVap

Run the config:
cmsRun step1.py #this returns a new root file called step0_HTL.root which starts 
from a raw file and runs the High Level Trigger (HLT) step.
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Using Resulting Files
Clone repository:

git clone git@github.com:ckoraka/egProducer.git

mv step1_HLT.root  egProducer/Producer/test/

Recompile:

scram b -j 8

Run Producer:

cd egProducer/Producer/test

cmsRun eganalyzer_cfg.py #This should output a root file. This runs over the output of the previous step.
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Histograms
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Simulations
Three ROOT simulations were used:

● ttbar 
● Z → e e
● ttbar → Di-Lepton

Number of Events:

● 2000
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Electron pt Normalized
● The electron pt spectrum is 

harder for the Z → ee 
simulation compared to the 
ttbar simulations.

● In the tt simulation, this is due 
to electrons originating from 
the W boson, which is lighter 
than the Z boson, that are 
produced along with an 
electron neutrino. 

● Histograms are normalized to 
area.
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Electron eta and phi Normalized
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Di-Electron Invariant Mass Normalized

● For the Z → ee 
simulation, we expect a 
peak at 90 GeV, which is 
the Z boson mass. For 
the ttbar simulation, we 
do not expect any peak.
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Number of Electrons per Event Normalized

● For ttbar, it is know that 99.9% of 
the time it decays into a W boson 
and a b quark. The W boson does 
not always decay into a lepton and 
lepton neutrino pair, so there is a 
difference between ttbar and ttbar 
→ dilepton. 

● The Z → ee simulation, for each 
event we expect 2 electron. This is 
why the peak is shifted with respect 
to the ttbar simulations.
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Improving Electron Seeding via Parallelization
● Inside the script that performs the electron seeding, we can write a Kernel that would assign a tracker hit and ECAL 

supercluster to a different GPU thread.
● The first part we identified that can be parallelized is the loop over the different ECAL SCs as shown below :

● Additionally, for each SCs, a loop over the collection of tracker hits is performed. Therefore each hit, is checked whether 
it geometrically agrees with the hypothesized electron trajectory. This part can be parallelized as well :
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Conclusions

● Electron reconstruction is a major part of the CMS reconstruction 
software.

● With the expected increase in luminosity, more efficient algorithms and 
new types of hardware, such as GPUs, should be explored.

● A description of the electron seeding algorithm and its potential to be 
adapted to run on GPUs was described.

● Implementation of this will hopefully result to a speed up of the 
reconstruction software.
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Results of Internship

● Worked remotely on daily basis with CMS physicists, PhD students, 
and post-docs.

● Learned new methods of critical thinking, technical details of GPUs vs 
CPUs, and a new coding language called CUDA.

● Strengthen my knowledge on particle detectors, ROOT, C++, python, 
troubleshooting code, and github.

● Gained a good relationship with Dr. Charis Kleio Koraka.
● Paid a total of $6000.
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Citation
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BACK - UP
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Algorithm Version-How do we match the trajectories and the hits?

● Tracks are evaluated using the Kalman Filter(KF) algorithm to create an 
electron trajectory.

● KF proceeds iteratively from the seed layer, starting from a rough estimate of the 
track parameters provided by the seed. It also includes the information of the 
succeeding detection layers one by one.

● While taking into account the electron energy loss using Bethe-Heitler 
Distribution.

● If the algorithm finds hits that satisfy the track, it creates candidate trajectories 
by using a Chi-squares fit. 

● Penalties are applied to the Chi-squared when there are missed hits.
● This helps minimize the inclusion of bremsstrahlung photons in hits of the 

electron trajectory.
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Physics Version(ECAL)

● When high energy particles are flying towards the ECAL, if the particle is an 
electron, positron, or a photon the particle is stopped by the ECAL 
detector.Why? 

● A calorimeter measures the energy a particle loses as it passes through. It is 
usually designed to stop entirely or “absorb” the particles coming from a 
collision.

● They are usually made up of very dense material.
● This forces them to deposit all of their energy within the detector, thus 

measuring their full energy.
● Electromagnetic calorimeters measure the energy of electrons and photons as 

they interact with the electrically charged particles in matter.
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ttbar simulation

● t quark first viewed by Kadanoff and Ceva in 1971.
● Most massive quark.
● Interacts via with all forces, but can only decay through weak interactions.
● Top decays ~99.9% into W boson and b quark (rarely a strange quark, or a 

down quark).
● Lifetime ~5×10−25 s.
● W can decay into many different combinations, lepton and antilepton or quark 

and antiquark.
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Altering Prebuilt Code

There were a few instances where the code was not being built or compiled 
correctly. This resulted in having to manually modify the code.

● Changing certain paths in egammaProducer.cc that were called on.
● Changing the number of events in step1_HLT.py to add better better statistics. 
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Troubleshooting

When running the code I ran into issues with the building code. It would save and 
modify the current build information.

Terminal commands:

rm -rf * (after entering the CMSW_12_4_0/python directory) 

scram b clean
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Initializing Variables from the Output ROOT File
Create python file:

nano output.py

Input this code:
import ROOT

import numpy as np

f1 = ROOT.TFile("output.root", "OPEN")

NBin = 13

binning =  
np.array((0.,15.,30.,45.,60.,75.,90.,105.,120.,135.,1
50.,165.,180.,195.))

h0 = ROOT.TH1F("h0","NUmber of Elecrons", 5, 0, 5)

h1 = ROOT.TH1F("h1",";pT [GeV];410/15 ",NBin,binning)

h2 = ROOT.TH1F("h2","Electron phi",10,-4,4)

h3 = ROOT.TH1F("h3","Electron eta",10,-4,4)

h5 = ROOT.TH1F("h5","Di-Electron invariant 
mass",10,0,100)

electron1 = ROOT.TLorentzVector()

electron2 = ROOT.TLorentzVector()

eTot = ROOT.TLorentzVector()

h5.Fill(eTot.M())
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Filling Histograms
for evt in f1.Get("egammaReconstruction/tree"):

    h0.Fill(len(evt.electron_pt))

    for i in range(0,len(evt.electron_pt)):

            h1.Fill(evt.electron_pt[i])

            h2.Fill(evt.electron_phi[i])

            h3.Fill(evt.electron_eta[i])

    if(len(evt.electron_pt) < 2):

            continue

    electron1.SetPtEtaPhiE(evt.electron_pt[0], evt.electron_eta[0], evt.electron_phi[0], evt.electron_energy[0])

    electron2.SetPtEtaPhiE(evt.electron_pt[1], evt.electron_eta[1], evt.electron_phi[1], evt.electron_energy[1])

    eTot = electron1 + electron2
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Drawing Histogram and Canvas then Saving it 

c0 = ROOT.TCanvas("c0","c0",1000,1000)
h0.SetTitle("CMS Simulation Run3 (13.6 TeV)")
h0.GetXaxis().SetTitle("Number of ELectrons")
h0.GetYaxis().SetTitle("Events")
h0.Draw("HIST")
h0.Draw("C9E1 SAME")
l0 = ROOT.TLegend(0.8, 0.7, 0.95, 0.75)
l0.AddEntry(h0, "ttbar", "l")
l0.Draw()
c0.Update()
c0.Draw()
c0.SaveAs("Number_Electron.png")
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Finishing up Histograms and Closing File

c5 = ROOT.TCanvas("c5","c5",1000,1000)
h5.SetTitle("CMS Simulation Run3 (13.6 TeV)")
h5.GetXaxis().SetTitle("Di-Electron Invariant Mass [GeV]")
h5.GetYaxis().SetTitle("Events")
h5.Draw("HIST")
h5.Draw("C9E1 SAME")
l5 = ROOT.TLegend(0.8, 0.7, 0.95, 0.75)
l5.AddEntry(h5, "ttbar", "l")
l5.Draw()
c5.Update()
c5.Draw()
c5.SaveAs("Electron_Di-Electron.png")
f1.Close()

This process was used 
repeatedly used for all 
histograms. Up until we 
finished and closed the code 
as shown in this block of code.
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