
Distributed Tracing in 
GlideinWMS

Rafael Ortiz (Arizona State University)
Dr. Marco Mambelli (Fermilab)



 

Project Proposal
GlideinWMS (http://glideinwms.fnal.gov/) is a workload management system allowing 

experiments like CMS, DUNE and others to access and efficiently use vast amounts of 
computing resources. CMS uses at any given time hundreds of thousands of CPUs for its 
simulations and analyses, with peaks over a million. And GlideinWMS provisions the required 
resources, using local or remote batch farms, private and commercial clouds, and 
supercomputing centers. The Glidein, or pilot job, is a very important component of GlideinWMS: 
it tests and sets up the computing nodes and makes them available for the scientific 
computations. 

This project aims to extend the GlideinWMS monitoring to include tracing and to evaluate 
optimizations. Compared to standard monitoring or logging, tracing encompasses a much wider, 
continuous view of an application. The goal of tracing is to follow the Glidein flow and data 
progression, producing a lot of information. This activity includes extending the Glidein 
monitoring framework, instrumenting the Glideins with tracing software, and analyzing the traces 
with statistical and ML techniques to understand in more detail the Glidein behavior and to 
suggest optimizations.



 

● GlideinWMS provisions jobs
● Allocates resources

● CMS & Universities
● All sorts of computers
● Simulations and Analyses

GlideinWMS



 

● Tracing collects temporal instances and time points throughout the 
execution of a program and the jobs that are running on the system

● Glide-ins run for a long time and on different systems
● Tracing is important so that we can see the progress of the Glide-ins

● Tools and Software:
● OpenTelemetry 
● Jaeger
● pfeil

Tracing



 

Parent and Child Spans



 

● OpenTelemetry is a library that allows a comprehensive way to instrument 
tracing 

● We send traces to Jaeger running on Docker via TCP 
● We initialize a parent trace in the Factory via the OpenTelemetry Python API 

and continue to send child spans in the Glidein using the pfeil command
● glideinTracer.py 

● Class Methods to initialize a trace and get the Trace ID 
● Implemented into GlideinWMS 

● glideFactoryLib.py modified to instrument Glidein submission
● Pfeil traces the main sequences of the Glidein in glidein_startup.sh

● Initialization, Set Up, Start Up, and Clean Up

Research



 

● When the Glidein trace data is in Jaeger, we can tabulate the multiple 
parameters of the trace data

● Data Analysis
● Optimizations

● Trace information will allow the GlideinWMS framework behavior to be more 
understood and more reliable

● We found that we can fully automate tracing and our prototype allows for 
manual data analysis

● Remaining parts to revise and adjust for GlideinWMS for future data 
analysis of Glideins everywhere

Research Cont.



 

Glideins in Jaeger UI



 

Tabulation



 

● Python!
● Class Methods and different API
● Syntax

● Linux
● Navigation
● Workflow and Troubleshooting
● Commands
● Git

● GitHub
● Workflow and Management
● Git within a project

● Software Development
● Computer Science

● Virtual Machines, Software Architecture
● Reading Docs, Docker, Deepened Comprehension in General

What I have learned!


