
Predicting Job Idle Time before

Execution using Machine

Learning

Mentee: Francisco Laris
Mentor: Bruno Coimbra

Abstract

Abstract: When jobs are submitted through HTCondor they are first submitted and

added to a queue before beginning execution. This idle time can vary wildly from job

to job resulting in some jobs start running later than expected. Machine learning

coupled with data from Landscape on the jobs status and submission time, should

give us means to create a model for predicting which jobs take longer to get out of

the queue and possibly why.

1. Introduction

2. HTCondor

3. glideinWMS

4. Machine Learning

5. Limits

Overview

● Train models using the data obtained from landscape.

● Select the best one for our purposes and make sure no

overfitting is occurring.

● Perform a periodicity analysis using fourier transforms to check

for emerging patterns over time.

● Check how accurate the predictive capabilities of our model

are.

Method

Data extraction

● Using elasticsearch_dsl we are able to extract random jobs from 2021.

● We specify a seed to make sure the code can be rerun with the same results.

● Due to the nature of the data on Landscape each job has

different parameters. This makes cleaning up the data so we

don’t have null values necessary.

● Once undesired columns (parameters) are dropped we need

split the DESIRED_USAGE_model parameter into 2 (ONSITE

and OFFSITE) in order for the model to be able to access the

information.

● These 2 columns contain either 1 or 0 corresponding to true or

false.

Data Cleanup

● After doing this we generate our target variable “Total Queue

Time”, which is defined as the difference between Job Current

Start Date and QDate.

Data Cleanup

● A small amount of jobs have null values in

DESIRED_USAGE_model.

● To fix this we try to reverse engineer what the usage model

probably was by getting the mean total queue time for every

option and substituting the null value with closest total queue

time for it.

Data Cleanup

● We then remove outliers to better train the models.

Data Cleanup

● In order to account for possible cyclical patterns in the data we

conduct a periodicity analysis using fourier transforms.

● The resulting graph shows that some cyclical behaviour

happens at a frequency lower than 1 per day.

Data Analysis

● Our decision tree regressor shows a lot of promise during

training, but once in testing it performance becomes by far the

worst out of all models.

● This is a classic example of overfitting. To see why this is

happening we may want to look at the following graph

Data Analysis

● Finally taking into consideration all of our variables we are able

to get the R^2 value of 0.34 in the Linear regressor, with the

other models proving worse due to overfitting.

● This means that without looking at the server and only using

information from submission we are able to account for about

⅓ of total variation in Queue time.

● This number might be further improved by looking at more

variables

Data Analysis

