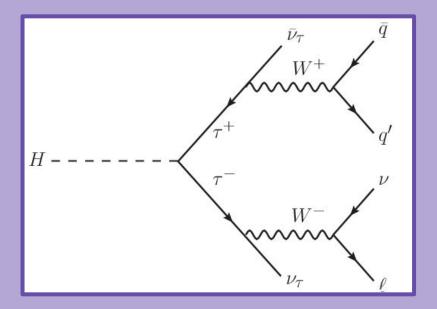


Final Presentation

Measuring the efficiency of a Higgs decay to tau-tau

Mentee: Rosalie Williams (California State Polytechnic University - Pomona) Mentor: Isobel Ojalvo (Princeton)

Overview


- Theoretical background:
 - Higgs ->Tau Tau
 - Higgs production
- Trigger system overview
- Control Plots
- Efficiency Measurement

2

Higgs Decay to Tau Tau

- High probability of decay to tau leptons
- Can decay leptonically or hadronically
 - Decaying to hadrons look like jets
- Boosted topologies
 - Heavy to light decay causes high momentum, called "boosted"
 - Angle of decay for the smaller particle is small, measured in η and Φ

Info on Tau Decays

• Tau Decays:

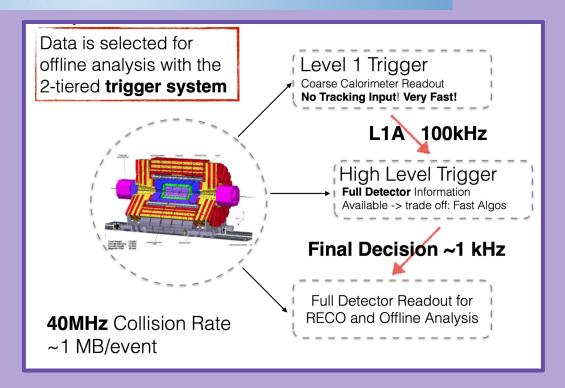
- Dominantly decays hadronically ~64.79%
 of the time
- Can decay leptonically

Boosted topologies

- Heavy to light decay causes high momentum, called "boosted"
- Angle of decay for the smaller particle is small, measured in η and Φ

Higgs Decay to Tau Tau

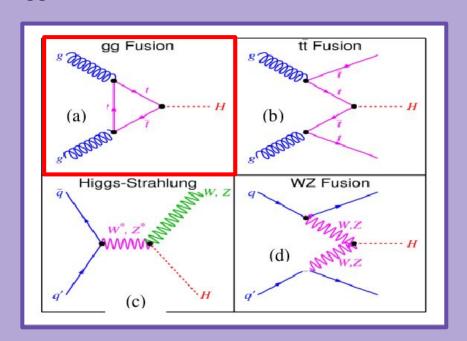
- Tau Leptons:
 - Reconstructing taus is difficult due to its decay
 - Neutrinos not measured by CMS


Goal: How can we ensure we collect Higgs to tau tau signal?

Decay channel	Branching ratio	Rel. uncertainty
$H \rightarrow \gamma \gamma$	2.28×10^{-3}	+5.0% -4.9%
$H \rightarrow ZZ$	2.64×10^{-2}	+4.3% -4.1%
$H \rightarrow W^+W^-$	2.15×10^{-1}	$^{+4.3\%}_{-4.2\%}$
$H \rightarrow \tau^+ \tau^-$	6.32×10^{-2}	+5.7% -5.7%
$H o b ar{b}$	5.77×10^{-1}	$^{+3.2\%}_{-3.3\%}$
$H \rightarrow Z\gamma$	1.54×10^{-3}	+9.0% -8.9%
$H \rightarrow \mu^{+}\mu^{-}$	2.19×10^{-4}	+6.0% -5.9%

Trigger System

- L1 Trigger selects high transverse momentum events and missing transverse energy
 - Performs online event selection
- We use the L1 Trigger and the High Level detector to examine the efficiency of this process



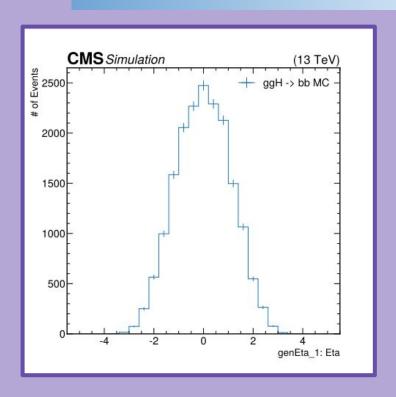
ggH -> tautau

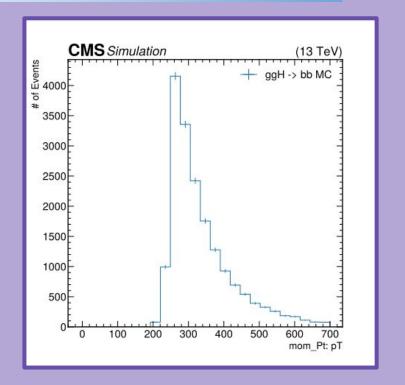
(Gluon fusion production of the Higgs, decays to two b-quarks)

- Collider produces gluons
- One of six processes to produce Higgs
- Gluon fusion most likely to produce Higgs

Diagram on the right shows various ways to produce a Higgs

Plots

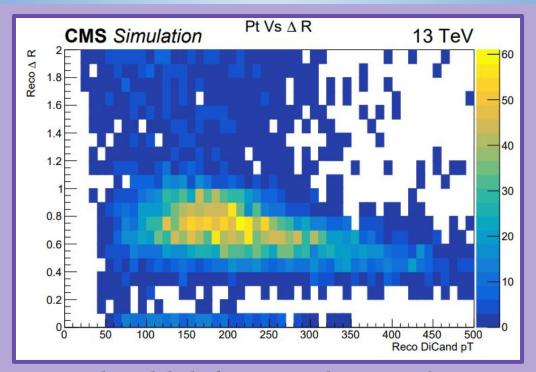

- Made in PyROOT
- Multiple elif statements to change formatting for certain types of datasets
- Value cuts


Example code creating plots labeled "Eta":

```
i=0
plt.style.use(hep.style.CMS)
for i in range(len(tree)):
    aspect = tree[i]
    array1 = aspect.array()
    h = hist.Hist(hist.axis.Regular(25, -5, 600, label=str(aspect.name)))
    plt.xlabel(str(aspect.name), fontsize = 20)
    hep.cms.label()
    plt.ylabel('# of Events', fontsize = 20)
    if "Eta" in aspect.name:
                                   #formatting Eta plots
        if "recoEta" in aspect.name: #applying cuts
            h = hist.Hist(hist.axis.Regular(25, -5, 5, label=str(aspect.name)))
            plt.xlabel((str(aspect.name)+': Eta'), fontsize = 20)
            particle cut = (array1 < 2.1) #need Eta values < 2.1
            h.fill(particle cut) #plotting those that passed the cut
            hep.histplot(h, label = "ggH -> bb MC")
            plt.legend()
                                   #adds Legend
```


Plot Examples

2D Plot


• A 2-dimensional histogram made with recoDiCand P_T and reco ΔR

Example code:

Rosalie Williams ¹⁰

2D Final Plot

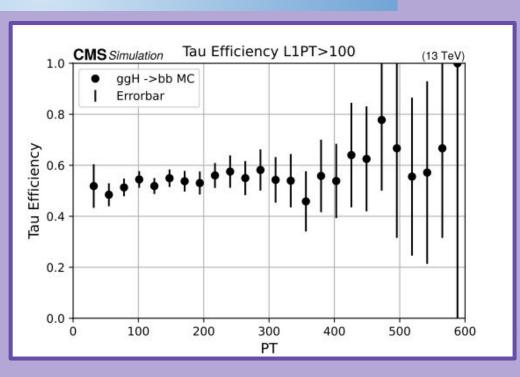
Made with help from Dr. Andrew D. Loeliger

Rosalie Williams ¹¹

Efficiency Plots

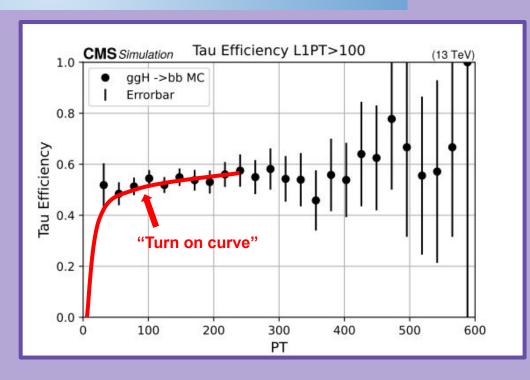
What is an Efficiency Plot?

- Measures how the level 1 trigger compares to the rest of the detector
- Measuring events made by the ggH -> bb MC


Efficiency = (# of Level 1 taus that pass our Level 1 criteria) / (# of genuine taus)

- "Genuine" taus are taus that are reconstructed by the rest of the detector
- The goal is to see how effective the trigger is at selecting genuine taus

Efficiency Measurement


• Selection of $recoP_T > 0$ GeV and $L1P_T > 100$ GeV

Efficiency Measurement

- Selection of $recoP_T > 0$ GeV and $L1P_T > 100$ GeV
- Should see a "turn on curve" around o

End

Questions,

Comments,

Concerns?