

Performance Benchmarks for Analysis Grand Challenge

Mentee: Holly Wingren (UIUC) Mentor: Carl Lundstedt (UNL)

Introduction

- Analysis Grand Challenge (AGC) of IRIS-HEP
 - Binned analysis, reinterpretation and end-to-end optimization of physics analysis use cases
 - Includes development of the required cyber infrastructure to execute them to demonstrate technologies envisioned for HL-LHC
- Capabilities include:
 - New user interfaces
 - Data access
 - Event selection
 - Statistical model building and fitting
 - Reinterpretation / analysis preservation
- Our goal: use pieces of an example physics analysis to study the performance of different system components

https://iris-hep.org/projects/agc

Purpose of Benchmarking

- "Why care how fast a system goes?"
 - Is it going as fast as it can? Is it going faster than other configurations?
- Measurement or a set of measurements related to the performance of a piece of code in an application
- Compares the performance between different system configurations and different running conditions
- Purpose: innovate, identify bottlenecks, compare techniques and technologies
- How do we Benchmark?
 - Execute benchmarks in Python
 - Use asv to automatically generate results and publish to web pages (GitHub)
 - Compare different versions of different packages
 - In case of performance regression, try to identify the commit which caused slow down of benchmark

Air Speed Velocity (asv)

- Tool for benchmarking Python packages over their lifetime
 - Runtime, memory consumption and even custom-computed values may be tracked
- Installed from PyPI using "pip3 install asv"
- Results displayed in an interactive web frontend
 - Requires only a basic static web server to host
- Benchmarks stored in a Python package
 - Collection of .py files in benchmark suite's benchmark directory (as defined by benchmark_dir in the asv.conf.json file)
 - Within each .py file, each benchmark is a function or method

🖿 / cc-asv / coffea /

Name 🔺	Last Modified
benchmarks	an hour ago
Coffea	an hour ago
asv.conf.json	an hour ago

/ ··· / coffea / benchmarks /

Name 🔺	Last Modified
nitpy	7 days ago
🔁 Q1_Parameters	an hour ago
🔁 Q2_Parameters	15 days ago
🔁 Q3_Parametere	15 days ago
🔁 Q4_Parameters	15 days ago
🔁 Q5_Parameters	15 days ago
🔁 Q6_Parameters	15 days ago
Q7_Parameters	15 days ago
🔁 Q8_Parameters	15 days ago

Benchmarks Tracked

- For each query, we tracked:
 - Walltime
 - Average Number of Threads
 - Bytes per Second
 - Chunksize per Second
 - Bytes per Thread per Second
 - Chunksize per Thread per Second
- For Coffea ADL Benchmarks and tt bar analysis, we were able to parameterize different variables (chunksize, max number of files, etc)

Coffea ADL Benchmarks

- Q1: All missing transverse energy (E_{T}^{miss}) in all the events
- Q2: Plot transverse momentum (p_T) of ALL the jets in all events
- Q3: Q2 but only for central jets (eta < 1)
- Q4: Plot E_{T}^{miss} for events that have at least two jets with Pt > 40 GeV
- Q5: Plot E_T^{miss} for events with opposite-charge muon pair with invariant mass between 60 and 120 GeV
- Q6: For events with at least 3 jets, plot the p_T of the trijet system four-momentum that has an invariant mass closest to 172.5 GeV, in each event plot maximum b-tagging discriminant value among the jets in this trijet.
- Q7: Plot the scalar sum in each event of the p_T of the jets with $p_T > 30$ GeV that are not with 0.4 in delta R of any light lepton with $p_T > 10$ GeV (Jets not aligned with lepton).
- Q8: For events with at least 3 light leptons and same-flavor, opposite-charge light lepton pair find such a pair that has a transverse mass closest to 91.2 GeV (Z boson) and plot the transverse mass of the system consisting of the E_T^{miss} and highest p_T lepton NOT in the Z pair.

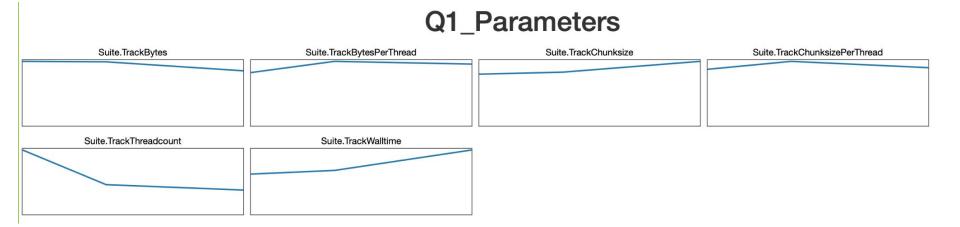
asv Coffea ADL Benchmarks Output

131074, 262144, 524288 are a parametrized values of chunksize •

]		Q1_Parameters.Suite		[Q1_Paramete		
L.	0.058]	Bytes per Second		l	2.78%]	•••	Chunksize		
		262144 524288	7340137.559497975 10609057.0794363 8889645.535759974				262	072	958. 2409 5643
[Q1_Parameters.Suite 	-	[[Q1_Paramete ===================================		
		262144	4550522.4118167125 4045014.458580545 3721829.442479468					131072 262144 524288	
[[Q1_Parameters.Suite	TrackChunksize	[[Q1_Paramete		
		Chunksize per Secon	nd				Walltime		
		262144 524288	4792.209902909048 16556.790885231017 31962.9542402445				262144	104.289074 14.7401179 10.3440161	9652661 L002799

nunksizePerThread

131072	958.9314505294694
262144	2409.355647460271
524288	5643.808664292671

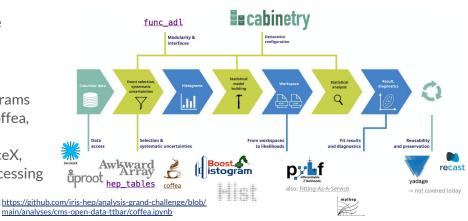

readcount

3.47%]	 	
_	Average Number of Threads	
	131072	4.6891098343871
	262144	4.115758281753771
	524288	2.261038003211384

alltime

]		gr_raranood	JID TO GUILOOT II GOMMAIL OIL
.17%]	• • •		
		Walltime	
		131072	104.28907497040927
		262144	14.740117965266109
		524288	10.344016100279987

Coffea ADL Plots



Coffea ADL Issues

- The way we had written our benchmarks, it ran the entire block of code each time
 - Took hours to fully run
- Tried a different approach that took less time to complete
 - Couldn't parameterize

CMS Open Data $\ensuremath{t\bar{t}}$: from data delivery to statistical inference

- 2015 CMS Open Data showcases an analysis pipeline
 - Features data delivery / processing, histogram construction / visualization, and statistical inference
- Technical demonstration
 - Includes relevant workflow aspects that physicists need, but isn't focused on making every piece physically meaningful
 - Particular systematic uncertainties: capture the workflow, but actual implementations are more complex in practice
- Three different data pipelines:
 - pure coffea process data and aggregate histograms
 - coffea w/ Servicex processors sends data to coffea, processors start running asynchronously
 - ServiceX followed by coffea standalone ServiceX, data transfer, allowed by standalone coffea processing

CMS Open Data tī Output

• 10, 100, 500 are the parameterized values of number of files

Bytes per Seco	nd 	[,3,000]	Number of Thre	eads
10 100 500	745541.8535327591 2291260.5771551155 3816971.075015612		10 100 500	4.444336225021103 14.25201091808489 33.71500969104301
		=======		
 · · · · · · · · · · · · · · · · · · ·	.Suite.TrackBytesPerThread === =================================	======= [100.00%] ··· Coffea_no [100.00%] ··· ======== walltime		

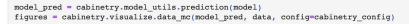
CMS Open Data tt Plots

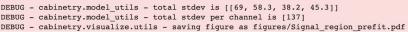
• <u>https://hollywingren.github.io/HollyWingren-cc-adl/#/</u>

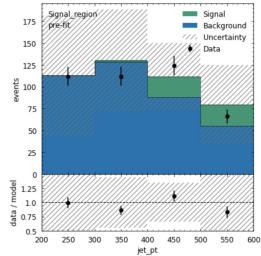
airspeed velocity of an unla	aden Coffea	Benchmark grid	Benchmark list	Regressions	Coffea_notebook.Suite.TrackBytes	
commits						
22907173^!						
plot settings		Bytes per Second-10			~	
log scale	2500000	Bytes per Second-100 Bytes per Second-500				
zoom y axis	3500000	Bytes per Second-Soo				
reference						
even commit spacing date scale						
legend	3000000					
machine						
Flatiron						
x-axis	2500000					
commit Bytes per Second					0	
Bytes per Second						
10 100 500	2000000					
benchmark						
▶ Coffea_notebook						
	1500000					
	1000000					
					0	

CMS Open Data tt Issues

Very large files for 1000 and -1

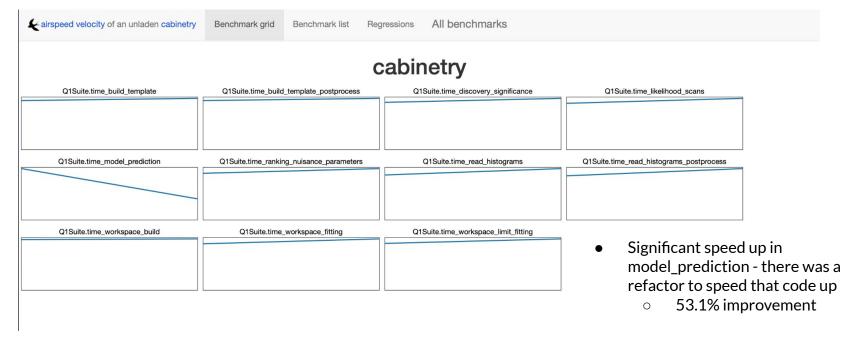

 Caused crash


 Needed to restart Dask cluster
 Possible issue with asv and/or Coffea not in the correct environment


setting	number of files	total size
10	90	15.6 GB
100	850	150 GB
500	3545	649 GB
1000	5864	1.05 TB
-1	22635	3.44 TB

cabinetry

- Python library for building and steering binned template fits
 - Written with applications in High Energy Physics in mind
- Interfaces many other powerful libraries to make it easy for an analyzer to run their statistical inference pipeline
- Statistical model building and fitting
- Requires configuration file w/ 4 blocks of settings and 3 systematic uncertainties:
 - o General, Regions, Samples, NormFactors
 - Luminosity, Modeling, WeightBasedModeling
- Example contains workspace building, maximum likelihood fitting, visualization, ranking



https://github.com/cabinetry/ cabinetry-tutorials/blob/mast er/example.ipynb

cabinetry Output

•	Running	22 total benchmarks (2 commits * 1 environments * 11 benchmarks)	
		 For cabinetry commit ae7444cd <v0.4.0^0>:</v0.4.0^0> 	
[0.00%]	•• Benchmarking virtualenv-py3.8-pip+wget-uproot	
[2.27%]	•••• Running (cabinetry.Q1Suite.time_build_template)	
[20.45%]	•••• Running (cabinetry.Q1Suite.time_workspace_build)	
[27.27%]	··· cabinetry.QlSuite.time_build_template	31.3±0.3ms
[29.55%]	··· cabinetry.QlSuite.time_build_template_postprocess	39.5±0.2ms
[31.82%]	··· cabinetry.QlSuite.time_discovery_significance	236±0.2ms
I	34.09%]	··· cabinetry.Q1Suite.time_likelihood_scans	519±2ms
[36.36%]	··· cabinetry.QlSuite.time_model_prediction	474±1µs
[38.64%]	•••• cabinetry.QlSuite.time_ranking_nuisance_parameters	1.45±0s
[40.91%]	··· cabinetry.Q1Suite.time_read_histograms	11.9±0.05ms
[43.18%]	•••• cabinetry.QlSuite.time_read_histograms_postprocess	20.2±0.04ms
[45.45%]	··· cabinetry.QlSuite.time_workspace_build	252±3µs
[47.73%]	··· cabinetry.Q1Suite.time_workspace_fitting	62.7±0.2ms
[50.00%]	··· cabinetry.Q1Suite.time_workspace_limit_fitting	9.05±0s

cabinetry Plots

func_adl

- Query languages
 - Database management systems help to address:
 - data independence
 - data redundancy
- Functional languages
 - Functional programming offers several desirable features for physics analyses:
 - Declarative
 - Stateless
 - Lazy
- Both of these concepts (query languages and functional languages) lead to more modular code:
 - Insulate analysis code from data storage location and file format
 - Insulate each section of code from other parts of the code
- 6 tasks:
 - Task 1: Plot the E_{T}^{miss} of all events
 - Task 2: Plot the p_T of all jets
 - Task 3: Plot the p_{T} of jets with $|\eta| < 1$
 - Task 4: Plot the E_{T}^{miss} of events that have at least two jets with pT > 40 GeV
 - \circ Task 5: Plot the E_{T}^{imiss} of events that have an opposite-charge muon pair with an invariant mass between 60 and 120 GeV
 - Task 6: For events with at least three jets, plot the p_T of the trijet four-momentum that has the invariant mass closest to 172.5 GeV in each event

func_adl Output

• Running 96 total benchmarks (8 commits * 1 environments * 12 benchmarks)	
[0.00%] • For func_adl commit 61b35593 <maint>:</maint>	
[0.00%] ·· Benchmarking conda-py3.8	
[3.65%] ··· Running (Q1_uproot.Q1Suite.time_met_two_jets_over_40)	
[6.77%] ··· Q1_uproot.Q1Suite.peakmem_met_two_jets_over_40	81.6M
[7.29%] ··· Q1_uproot.Q1Suite.peakmem_met_two_jets_under_1	82.1M
<pre>[7.81%] ··· Q1_uproot.Q1Suite.peakmem_opposite_charge_60_to_120_GeV</pre>	85.2M
[8.33%] ··· Q1_uproot.Q1Suite.peakmem_pt_all_jets	80.6M
[8.85%] ··· Q1_uproot.Q1Suite.peakmem_servicex_q1	79.4M
[9.38%] ··· Q1_uproot.Q1Suite.peakmem_trijet_four_momentum_over_3	89.7M
<pre>[9.90%] ··· Q1_uproot.Q1Suite.time_met_two_jets_over_40</pre>	469±6ms
<pre>[10.42%] ··· Q1_uproot.Q1Suite.time_met_two_jets_under_1</pre>	571±8ms
[10.94%] ··· Q1_uproot.Q1Suite.time_opposite_charge_60_to_120_GeV	853±7ms
[11.46%] ··· Q1_uproot.Q1Suite.time_pt_all_jets	463±6ms
[11.98%] ··· Q1_uproot.Q1Suite.time_servicex_q1	286±3ms
[12.50%] ··· Q1 uproot.Q1Suite.time trijet four momentum over 3	920±8ms

func_adl Plots

airspeed velocity of an unladen func_adl	Benchmark grid	Benchmark list Re	gressions All benchmarks		
			Q1_uproot		
Q1Suite.peakmem_met_two_jets_over_40	Q1Suite.peakmer	n_met_two_jets_under_1	Q1Suite.peakmem_opposite_charge_60_to_120_GeV	Q1Suite.peakmem_pt_all_jets	Q1Suite.peakmem_servicex_q1
	010.00.00				
1Suite.peakmem_trijet_four_momentum_over_3	Q1Suite.time_I	net_two_jets_over_40	Q1Suite.time_met_two_jets_under_1	Q1Suite.time_opposite_charge_60_to_120_GeV	Q1Suite.time_pt_all_jets
Q1Suite.time_servicex_q1	Q1Suite.time_trijet	_four_momentum_over_3			

Conclusions and Future Work

- Successfully converted ADL, FUNC_ADL, CABINETRY and Coffea benchmarks to ASV and can publish the results to github pages
- Future benchmarks could include new I/O products such as ServiceX and Skyhook
- Implement the t-tbar benchmarks at various scales once problems with Coffea's interaction with ASV are addressed

References

Cranmer, Kyle, and Alexander Held. "Cabinetry." Institute for Research and Innovation in Software for High Energy Physics, 28 June 2022, https://iris-hep.org/projects/cabinetry.html. Droettboom, Michael, and Pauli Virtanen. "Airspeed Velocity." Airspeed Velocity 0.5.1 Documentation, 2018, https://asv.readthedocs.io/en/stable/index.html. Graur, Dan, et al. "Evaluating Query Languages and Systems for High-Energy Physics Data [Extended Version]." Inspire HEP, 26 Apr. 2021, https://inspirehep.net/literature/1860769. Held, Alexander, and Oksana Shadura. "The Analysis Grand Challenge." Institute for Research and Innovation in Software for High Energy Physics, https://iris-hep.org/projects/agc. Held, Alexander, et al. "Scikit-Hep/Cabinetry." GitHub, 11 Feb. 2022, https://github.com/scikit-hep/cabinetry. Held, Alexander. "Analysis-Grand-Challenge/Coffea.jpynb." GitHub, 9 Aug. 2022, https://github.com/iris-hep/analysis-grand-challenge/blob/main/analyses/cms-open-data-ttbar/coffea.jpynb. Lundstedt, Carl. "Clundst/CL-Bench.github.io." GitHub, 10 Aug. 2022, https://github.com/clundst/cl-bench.github.io. Proffitt, Mason, et al. "Iris-HEP/ADL-Benchmarks-Index." GitHub, 25 Jan. 2022, https://github.com/iris-hep/adl-benchmarks-index. Proffitt, Mason. "Func-Adl-Demo/Demo.jpynb." GitHub, 3 Nov. 2021, https://github.com/masonproffitt/func-adl-demo/blob/master/demo.jpynb. Shadura, Oksana, and Alexander Held. "Oshadura/CC-ASV." GitHub, 4 Aug. 2022, https://github.com/oshadura/cc-asv. Smith, Nicholas, "Coffea-Benchmarks/Coffea-ADL-Benchmarks.jpvnb," GitHub, 15 Nov, 2021, https://github.com/CoffeaTeam/coffea-benchmarks/blob/master/coffea-adl-benchmarks.jpvnb," Watts, Gordon, et al. "Iris-Hep/FUNC ADL." GitHub, 22 Mar, 2022, https://github.com/iris-hep/func adl.