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Introduction
● Analysis Grand Challenge (AGC) of IRIS-HEP

○ Binned analysis, reinterpretation and end-to-end

optimization of physics analysis use cases

○ Includes development of the required cyber 

infrastructure to execute them to demonstrate 

technologies envisioned for HL-LHC

● Capabilities include:
○ New user interfaces

○ Data access

○ Event selection

○ Statistical model building and fitting

○ Reinterpretation / analysis preservation

● Our goal: use pieces of an example physics analysis to study

 the performance of different system components

https://iris-hep.org/projects/agc 

https://iris-hep.org/projects/agc


Purpose of Benchmarking

● "Why care how fast a system goes?"  
○ Is it going as fast as it can? Is it going faster than other configurations?

● Measurement or a set of measurements related to the performance of a piece of code in an application

● Compares the performance between different system configurations and different running conditions

● Purpose: innovate, identify bottlenecks, compare techniques and technologies

● How do we Benchmark?
○ Execute benchmarks in Python

○ Use asv to automatically generate results and publish to web pages (GitHub)

○ Compare different versions of different packages

○ In case of performance regression, try to identify the commit which caused slow down of benchmark



Air Speed Velocity (asv)

● Tool for benchmarking Python packages over their lifetime
○ Runtime, memory consumption and even custom-computed 

values may be tracked

● Installed from PyPI using “pip3 install asv”

● Results displayed in an interactive web frontend
○ Requires only a basic static web server to host

● Benchmarks stored in a Python package
○ Collection of .py files in benchmark suite’s benchmark directory 

(as defined by benchmark_dir in the asv.conf.json file)

○ Within each .py file, each benchmark is a function or method



Benchmarks Tracked

● For each query, we tracked:

○ Walltime

○ Average Number of Threads

○ Bytes per Second

○ Chunksize per Second

○ Bytes per Thread per Second

○ Chunksize per Thread per Second

● For Coffea ADL Benchmarks and tt bar analysis, we were able to parameterize 

different variables (chunksize, max number of files, etc)



Coffea ADL Benchmarks
● Q1: All missing transverse energy (E

T
miss) in all the events

● Q2: Plot transverse momentum (p
T

) of ALL the jets in all events

● Q3: Q2 but only for central jets (eta < 1)

● Q4: Plot E
T

miss for events that have at least two jets with Pt > 40 GeV

● Q5: Plot E
T

miss for events with opposite-charge muon pair with invariant mass between 60 and 120 GeV

● Q6: For events with at least 3 jets, plot the p
T

 of the trijet system four-momentum that has an invariant 

mass closest to 172.5 GeV, in each event plot maximum b-tagging discriminant value among the jets in 

this trijet.

● Q7: Plot the scalar sum in each event of the p
T

 of the jets with p
T

 > 30 GeV that are not with 0.4 in delta R 

of any light lepton with p
T

 > 10 GeV (Jets not aligned with lepton).

● Q8: For events with at least 3 light leptons and same-flavor, opposite-charge light lepton pair find such a 

pair that has a transverse mass closest to 91.2 GeV (Z boson) and plot the transverse mass of the system 

consisting of the E
T

miss and highest p
T

 lepton NOT in the Z pair.



asv Coffea ADL  Benchmarks Output
● 131074, 262144, 524288 are a parametrized values of chunksize 



Coffea ADL Plots



Coffea ADL Issues

● The way we had written our benchmarks, it ran the entire block of code each time
○ Took hours to fully run

● Tried a different approach that took less time to complete
○ Couldn’t parameterize



CMS Open Data tt: from data delivery to statistical inference

● 2015 CMS Open Data - showcases an analysis pipeline
○ Features data delivery / processing, histogram construction / visualization, and statistical inference

● Technical demonstration
○ Includes relevant workflow aspects that physicists need, but isn’t focused on making every piece physically 

meaningful
○ Particular systematic uncertainties: capture the 

workflow, but actual implementations are more 
complex in practice

● Three different data pipelines:
○ pure coffea - process data and aggregate histograms
○ coffea w/ Servicex processors - sends data to coffea, 

processors start running asynchronously
○ ServiceX followed by coffea  - standalone ServiceX, 

data transfer, allowed by standalone coffea processing

https://github.com/iris-hep/analysis-grand-challenge/blob/
main/analyses/cms-open-data-ttbar/coffea.ipynb 

https://github.com/iris-hep/analysis-grand-challenge/blob/main/analyses/cms-open-data-ttbar/coffea.ipynb
https://github.com/iris-hep/analysis-grand-challenge/blob/main/analyses/cms-open-data-ttbar/coffea.ipynb


CMS Open Data tt Output
● 10, 100, 500 are the parameterized values of number of files



CMS Open Data tt Plots
● https://hollywingren.github.io/HollyWingren-cc-adl/#/ 

https://hollywingren.github.io/HollyWingren-cc-adl/#/


CMS Open Data tt Issues

● Very large files for 1000 and -1
○ Caused crash

● Needed to restart Dask cluster

● Possible issue with asv and/or Coffea not in the 

correct environment



cabinetry

● Python library for building and steering binned 
template fits
○ Written with applications in High Energy Physics in 

mind
● Interfaces many other powerful libraries to make it 

easy for an analyzer to run their statistical inference 
pipeline

● Statistical model building and fitting
● Requires configuration file w/ 4 blocks of settings 

and 3 systematic uncertainties:
○ General, Regions, Samples, NormFactors
○ Luminosity, Modeling, WeightBasedModeling

● Example contains workspace building, maximum 
likelihood fitting, visualization, ranking https://github.com/cabinetry/

cabinetry-tutorials/blob/mast
er/example.ipynb 

https://github.com/cabinetry/cabinetry-tutorials/blob/master/example.ipynb
https://github.com/cabinetry/cabinetry-tutorials/blob/master/example.ipynb
https://github.com/cabinetry/cabinetry-tutorials/blob/master/example.ipynb


cabinetry Output



cabinetry Plots

● Significant speed up in 
model_prediction - there was a 
refactor to speed that code up
○ 53.1% improvement



func_adl
● Query languages

○ Database management systems help to address:
■ data independence
■ data redundancy

● Functional languages
○ Functional programming offers several desirable features for physics analyses:

■ Declarative
■ Stateless
■ Lazy

● Both of these concepts (query languages and functional languages) lead to more modular code:
○ Insulate analysis code from data storage location and file format
○ Insulate each section of code from other parts of the code

● 6 tasks:
○ Task 1: Plot the E

T
miss of all events

○ Task 2: Plot the p
T

 of all jets
○ Task 3: Plot the p

T
 of jets with |η| < 1

○ Task 4: Plot the E
T

miss of events that have at least two jets with pT > 40 GeV
○ Task 5: Plot the E

T
miss of events that have an opposite-charge muon pair with an invariant mass between 60 and 120 GeV

○ Task 6: For events with at least three jets, plot the p
T

 of the trijet four-momentum that has the invariant mass closest to 172.5 GeV in each event



func_adl Output



func_adl Plots



Conclusions and Future Work

● Successfully converted ADL, FUNC_ADL, CABINETRY and Coffea benchmarks to ASV and can 

publish the results to github pages

● Future benchmarks could include new I/O products such as ServiceX and Skyhook

● Implement the t-tbar benchmarks at various scales once problems with Coffea's interaction with 

ASV are addressed
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