
Performance Benchmarks for
Analysis Grand Challenge

Mentee: Holly Wingren (UIUC)
Mentor: Carl Lundstedt (UNL)

Introduction
● Analysis Grand Challenge (AGC) of IRIS-HEP

○ Binned analysis, reinterpretation and end-to-end

optimization of physics analysis use cases

○ Includes development of the required cyber

infrastructure to execute them to demonstrate

technologies envisioned for HL-LHC

● Capabilities include:
○ New user interfaces

○ Data access

○ Event selection

○ Statistical model building and fitting

○ Reinterpretation / analysis preservation

● Our goal: use pieces of an example physics analysis to study

 the performance of different system components

https://iris-hep.org/projects/agc

https://iris-hep.org/projects/agc

Purpose of Benchmarking

● "Why care how fast a system goes?"
○ Is it going as fast as it can? Is it going faster than other configurations?

● Measurement or a set of measurements related to the performance of a piece of code in an application

● Compares the performance between different system configurations and different running conditions

● Purpose: innovate, identify bottlenecks, compare techniques and technologies

● How do we Benchmark?
○ Execute benchmarks in Python

○ Use asv to automatically generate results and publish to web pages (GitHub)

○ Compare different versions of different packages

○ In case of performance regression, try to identify the commit which caused slow down of benchmark

Air Speed Velocity (asv)

● Tool for benchmarking Python packages over their lifetime
○ Runtime, memory consumption and even custom-computed

values may be tracked

● Installed from PyPI using “pip3 install asv”

● Results displayed in an interactive web frontend
○ Requires only a basic static web server to host

● Benchmarks stored in a Python package
○ Collection of .py files in benchmark suite’s benchmark directory

(as defined by benchmark_dir in the asv.conf.json file)

○ Within each .py file, each benchmark is a function or method

Benchmarks Tracked

● For each query, we tracked:

○ Walltime

○ Average Number of Threads

○ Bytes per Second

○ Chunksize per Second

○ Bytes per Thread per Second

○ Chunksize per Thread per Second

● For Coffea ADL Benchmarks and tt bar analysis, we were able to parameterize

different variables (chunksize, max number of files, etc)

Coffea ADL Benchmarks
● Q1: All missing transverse energy (E

T
miss) in all the events

● Q2: Plot transverse momentum (p
T

) of ALL the jets in all events

● Q3: Q2 but only for central jets (eta < 1)

● Q4: Plot E
T

miss for events that have at least two jets with Pt > 40 GeV

● Q5: Plot E
T

miss for events with opposite-charge muon pair with invariant mass between 60 and 120 GeV

● Q6: For events with at least 3 jets, plot the p
T

 of the trijet system four-momentum that has an invariant

mass closest to 172.5 GeV, in each event plot maximum b-tagging discriminant value among the jets in

this trijet.

● Q7: Plot the scalar sum in each event of the p
T

 of the jets with p
T

 > 30 GeV that are not with 0.4 in delta R

of any light lepton with p
T

 > 10 GeV (Jets not aligned with lepton).

● Q8: For events with at least 3 light leptons and same-flavor, opposite-charge light lepton pair find such a

pair that has a transverse mass closest to 91.2 GeV (Z boson) and plot the transverse mass of the system

consisting of the E
T

miss and highest p
T

 lepton NOT in the Z pair.

asv Coffea ADL Benchmarks Output
● 131074, 262144, 524288 are a parametrized values of chunksize

Coffea ADL Plots

Coffea ADL Issues

● The way we had written our benchmarks, it ran the entire block of code each time
○ Took hours to fully run

● Tried a different approach that took less time to complete
○ Couldn’t parameterize

CMS Open Data tt: from data delivery to statistical inference

● 2015 CMS Open Data - showcases an analysis pipeline
○ Features data delivery / processing, histogram construction / visualization, and statistical inference

● Technical demonstration
○ Includes relevant workflow aspects that physicists need, but isn’t focused on making every piece physically

meaningful
○ Particular systematic uncertainties: capture the

workflow, but actual implementations are more
complex in practice

● Three different data pipelines:
○ pure coffea - process data and aggregate histograms
○ coffea w/ Servicex processors - sends data to coffea,

processors start running asynchronously
○ ServiceX followed by coffea - standalone ServiceX,

data transfer, allowed by standalone coffea processing

https://github.com/iris-hep/analysis-grand-challenge/blob/
main/analyses/cms-open-data-ttbar/coffea.ipynb

https://github.com/iris-hep/analysis-grand-challenge/blob/main/analyses/cms-open-data-ttbar/coffea.ipynb
https://github.com/iris-hep/analysis-grand-challenge/blob/main/analyses/cms-open-data-ttbar/coffea.ipynb

CMS Open Data tt Output
● 10, 100, 500 are the parameterized values of number of files

CMS Open Data tt Plots
● https://hollywingren.github.io/HollyWingren-cc-adl/#/

https://hollywingren.github.io/HollyWingren-cc-adl/#/

CMS Open Data tt Issues

● Very large files for 1000 and -1
○ Caused crash

● Needed to restart Dask cluster

● Possible issue with asv and/or Coffea not in the

correct environment

cabinetry

● Python library for building and steering binned
template fits
○ Written with applications in High Energy Physics in

mind
● Interfaces many other powerful libraries to make it

easy for an analyzer to run their statistical inference
pipeline

● Statistical model building and fitting
● Requires configuration file w/ 4 blocks of settings

and 3 systematic uncertainties:
○ General, Regions, Samples, NormFactors
○ Luminosity, Modeling, WeightBasedModeling

● Example contains workspace building, maximum
likelihood fitting, visualization, ranking https://github.com/cabinetry/

cabinetry-tutorials/blob/mast
er/example.ipynb

https://github.com/cabinetry/cabinetry-tutorials/blob/master/example.ipynb
https://github.com/cabinetry/cabinetry-tutorials/blob/master/example.ipynb
https://github.com/cabinetry/cabinetry-tutorials/blob/master/example.ipynb

cabinetry Output

cabinetry Plots

● Significant speed up in
model_prediction - there was a
refactor to speed that code up
○ 53.1% improvement

func_adl
● Query languages

○ Database management systems help to address:
■ data independence
■ data redundancy

● Functional languages
○ Functional programming offers several desirable features for physics analyses:

■ Declarative
■ Stateless
■ Lazy

● Both of these concepts (query languages and functional languages) lead to more modular code:
○ Insulate analysis code from data storage location and file format
○ Insulate each section of code from other parts of the code

● 6 tasks:
○ Task 1: Plot the E

T
miss of all events

○ Task 2: Plot the p
T

 of all jets
○ Task 3: Plot the p

T
 of jets with |η| < 1

○ Task 4: Plot the E
T

miss of events that have at least two jets with pT > 40 GeV
○ Task 5: Plot the E

T
miss of events that have an opposite-charge muon pair with an invariant mass between 60 and 120 GeV

○ Task 6: For events with at least three jets, plot the p
T

 of the trijet four-momentum that has the invariant mass closest to 172.5 GeV in each event

func_adl Output

func_adl Plots

Conclusions and Future Work

● Successfully converted ADL, FUNC_ADL, CABINETRY and Coffea benchmarks to ASV and can

publish the results to github pages

● Future benchmarks could include new I/O products such as ServiceX and Skyhook

● Implement the t-tbar benchmarks at various scales once problems with Coffea's interaction with

ASV are addressed

References
Cranmer, Kyle, and Alexander Held. “Cabinetry.” Institute for Research and Innovation in Software for High Energy Physics, 28 June 2022, https://iris-hep.org/projects/cabinetry.html.

Droettboom, Michael, and Pauli Virtanen. “Airspeed Velocity.” Airspeed Velocity 0.5.1 Documentation, 2018, https://asv.readthedocs.io/en/stable/index.html.

Graur, Dan, et al. “Evaluating Query Languages and Systems for High-Energy Physics Data [Extended Version].” Inspire HEP, 26 Apr. 2021, https://inspirehep.net/literature/1860769.

Held, Alexander, and Oksana Shadura. “The Analysis Grand Challenge.” Institute for Research and Innovation in Software for High Energy Physics, https://iris-hep.org/projects/agc.

Held, Alexander, et al. “Scikit-Hep/Cabinetry.” GitHub, 11 Feb. 2022, https://github.com/scikit-hep/cabinetry.

Held, Alexander. “Analysis-Grand-Challenge/Coffea.ipynb.” GitHub, 9 Aug. 2022, https://github.com/iris-hep/analysis-grand-challenge/blob/main/analyses/cms-open-data-ttbar/coffea.ipynb.

Lundstedt , Carl. “Clundst/CL-Bench.github.io.” GitHub, 10 Aug. 2022, https://github.com/clundst/cl-bench.github.io.

Proffitt, Mason, et al. “Iris-HEP/ADL-Benchmarks-Index.” GitHub, 25 Jan. 2022, https://github.com/iris-hep/adl-benchmarks-index.

Proffitt, Mason. “Func-Adl-Demo/Demo.ipynb.” GitHub, 3 Nov. 2021, https://github.com/masonproffitt/func-adl-demo/blob/master/demo.ipynb.

Shadura, Oksana, and Alexander Held. “Oshadura/CC-ASV.” GitHub, 4 Aug. 2022, https://github.com/oshadura/cc-asv.

Smith, Nicholas. “Coffea-Benchmarks/Coffea-ADL-Benchmarks.ipynb.” GitHub, 15 Nov. 2021, https://github.com/CoffeaTeam/coffea-benchmarks/blob/master/coffea-adl-benchmarks.ipynb.

Watts, Gordon, et al. “Iris-Hep/FUNC_ADL.” GitHub, 22 Mar. 2022, https://github.com/iris-hep/func_adl.

