Charmonium production at LHCb: search strategy with pp̄ final state

Emi KOU (LAL/IN2P3-Orsay) in collaboration with S. Barsuk, J. He, B.Viaud

11-14 April 2011 @ Portoroz, Slovenia

Introduction: charmonium spectroscopy

• Established charmonium below threshold (=2m_D)

		$n^{2s+1}l_I$	J^{PC}	mass MeV	width MeV	discovery
η_c	pseudoscalar	$1 {}^{1}S_{0}$	0-+	2980	25.5	1980
J/ψ	vector	$1 {}^{3}S_{1}$	$1^{}$	3097	0.093	1974
h_c	axial vector	$1 \ {}^{1}P_{1}$	1^{+-}	3524		2005
χ_c 0	scalar	$1 {}^{3}P_{0}$	0++	3415	10.4	1975
χ_{c1}	axial vector	$1 {}^{3}P_{1}$	1^{++}	3511	0.89	1975
χ_{c2}	tensor	$1 {}^{3}P_{2}$	2++	3556	2.06	1975
$\psi(3770)$	vector	1 ${}^{3}D_{1}$	1	3771	23.0	1977
$\eta_c(2S)$	pseudoscalar	2 ${}^{1}S_{0}$	$^{0-+}$	3637	< 55	2002
$\psi(2S)$	vector	$2 \ {}^3S_1$	$1^{}$	3686	0.337	1974

Many new studies done at B factories above the threshold

Introduction: charmonium spectroscopy

• Theoretical predictions and new states (XYZ):

Introduction: charmonium spectroscopy

• Theoretical predictions and new states (XYZ):

Recent discovery of the "missing" h_c

- h_c had been missing because...
 - ▶ e+e- machines can not produce it directly.
 - ▶ $B \rightarrow h_c K$ is a factorisation forbidden channel.
 - ➡ E760 (Fermilab): ~50 events in '95

Recent discovery of the "missing" h_c

- h_c had been missing because...
 - ▶ e+e- machines can not produce it directly.
 - ► $B \rightarrow h_c K$ is a factorisation forbidden channel. *E835 PRD72 ('05)*
 - ➡ E760 (Fermilab): ~50 events in '95 confirmed by E835 in '05 CLEO PRL95 ('05)

Theoretical issues on h_c

- Mass: Testing the hyper-fine splitting term in the potential model → The recent CLEO/BESIII measurements show an excellent agreement!
- $B \rightarrow h_c K$: Testing the non-factorisable contributions \rightarrow Recent theoretical estimate $Br(B \rightarrow h_c K) \sim 2.5 \times 10^{-5}$; A search at SuperB/LHCb is important! Beneke et al NP B811 ('09)

Beneke et al NP B811 (109) Colangelo et al, PL B542 (102)

- Decay width: Testing the spin-symmetry of the non-relativistic QCD \rightarrow The recent BESIII measurement shows an agreement. BESIII PRL104 (10)
- Hadroproduction: Testing the color-octet mechanism → Search at LHCb is VERY important!

Charmonium hadroproduction at LHC

- The first measurement of direct J/ψ and ψ' production at CDF, PRL79 ('97)
 CDF in '97: striking discrepancy from theoretical expectation
- NRQCD: double expansion in terms of αs and v (velocity): an addition of "colour-octet" term is crucial to explain the cross section?! → Still many questions remaining!!!

Водwin, Braaten, Lepage, PRD51 ('95)

LHC early data: already a million of J/ ψ s been collected!

Detailed study will start!

- Polarisation measurement?
- How large is the feed-down?
- What is the p_T spectrum like?
- Observation of the other charmonium?

h_c hadroproduction at LHCb

- Importance of having a good search strategy:
 - ► At Tevatron, J/ ψ production rate is measured by using the decay channel of J/ ψ → $\mu^+\mu$ (very clean!).
 - ► The χ_c production rates are measured using the decay channel of $\chi_c \rightarrow J/\psi \pi \rightarrow \mu^+ \mu^- \pi$.
 - η_c and h_c do not decay to leptons, thus difficult to find.
 - Let us first go through the list of possible decay channels to find the best final state for LHCb.

Diagrams for h_c decays

VS

$$h_c \stackrel{c}{\overline{c}} \xrightarrow{\gamma} \gamma$$

$$\Gamma \propto \langle \Psi_{h_c} | r | \Psi_{\eta_c} \rangle$$

Assuming

$$\langle \Psi_{h_c} | r | \Psi_{\eta_c} \rangle \simeq \langle \chi_{c1} | r | \Psi_{J/\psi} \rangle$$

and using the observed width of $\Gamma(\chi_{c1} \rightarrow J/\psi\gamma) \simeq 0.3 \text{MeV}$

$$\Gamma(h_c \to \gamma \eta_c) = \left(\frac{|\vec{P}|}{|\vec{P}'|}\right)^3 \Gamma(\chi_{c1} \to J/\psi\gamma)$$
$$= 0.52 \pm 0.09 \text{ MeV}$$

Annihilating

$$h_c \overset{c}{\underset{c}{\overset{\circ}{\xrightarrow{}}}} \overset{g}{\underset{\circ}{\overset{\circ}{\xrightarrow{}}}} \overset{(}{\underset{\circ}{\overset{\circ}{\xrightarrow{}}}} \overset{(}{\underset{\circ}{\overset{\circ}{\xrightarrow{}}}} \overset{(}{\underset{\circ}{\xrightarrow{}}} \overset{(}{\underset{\circ}{\xrightarrow{$$

$$\Gamma \propto |\Psi_{h_c}(0)|^2$$

Assuming

 $|\Psi_{h_c}(0)| \simeq |\Psi_{\chi_{c1}}(0)|$

and using the observed width of $\Gamma(\chi_{c1} \rightarrow qqg) \simeq 0.6 {\rm MeV}$

$$\Gamma(h_c \to ggg) \simeq \frac{5}{6} \Gamma(\chi_{c1} \to qqg)$$

$$\simeq 0.53 \pm 0.08 \text{ MeV}$$

Diagrams for h_c decays

VS

$$h_c \stackrel{c}{\overline{c}} \xrightarrow{\gamma} \eta_c$$

✓ LHCb may see this channel through $\eta_c \rightarrow \Phi \Phi \rightarrow 2(K^+K^-)$ though our MC study shows it challenging...

$$\Gamma(h_c \to \gamma \eta_c) = \left(\frac{|\vec{P}|}{|\vec{P}'|}\right)^3 \Gamma(\chi_{c1} \to J/\psi\gamma)$$
$$= 0.52 \pm 0.09 \text{ MeV}$$

Annihilating

$$\Gamma \propto |\Psi_{h_c}(0)|^2$$

Assuming

 $|\Psi_{h_c}(0)| \simeq |\Psi_{\chi_{c1}}(0)|$

and using the observed width of $\Gamma(\chi_{c1} \rightarrow qqg) \simeq 0.6 \mathrm{MeV}$

$$\Gamma(h_c \to ggg) \simeq \frac{5}{6} \Gamma(\chi_{c1} \to qqg)$$
$$\simeq 0.53 \pm 0.08 \text{ MeV}$$

Diagrams for h_c decays

VS

Surviving

$$h_c \stackrel{c}{\overline{c}} \xrightarrow{\gamma} \eta_c$$

✓ LHCb may see this channel through $\eta_c \rightarrow \Phi \Phi \rightarrow 2(K^+K^-)$ though our MC study shows it challenging...

$$\Gamma(h_c \to \gamma \eta_c) = \left(\frac{|\vec{P}|}{|\vec{P}'|}\right)^3 \Gamma(\chi_{c1} \to J/\psi\gamma)$$
$$= 0.52 \pm 0.09 \text{ MeV}$$

Annihilating

 $|\mathbf{u}_{\mathbf{u}}| = (\mathbf{0}) |2$

✓ There are over a hundred of possible final states.
✓ We investigate what is the best channel for LHCb.

 $\Gamma(h_c \to ggg) \simeq \frac{5}{6} \Gamma(\chi_{c1} \to qqg)$ $\simeq 0.53 \pm 0.08 \text{ MeV}$

Possible hadronic decay of h_c

√*C* conservation: (1V+1P) or (1V+2P) or (3V) (V=vector mesons, P=pseudoscalar mesons)

 $\sqrt{\pi}$ final state: *G*-parity requires odd number of π 's, then always one π^{0} . So NG for LHCb. (cf CLEO arxiv:0906.4470)

√ K final state: $\phi\phi$ is forbidden by C while ϕf_0 , ϕf_2 ($f_S \rightarrow KK$ or $\phi\phi$) are OK.

 $\sqrt{\pi/K}$ mixed final state: OZI forbidden except for special cases (e.g. $\pi\pi$ -KK mixing).

 \checkmark baryon final state: $p\overline{p}$, $\Lambda\overline{\Lambda}$ are possible.

Possible hadronic decay of h_c

√*C* conservation: (1V+1P) or (1V+2P) or (3V) (V=vector mesons, P=pseudoscalar mesons)

√π final state: *G*-parity requires odd number of π's, then always one π⁰. So NG for LHCb. (cf CLEO arxiv:0906.4470)

√ K final state: $\phi\phi$ is forbidden by C while ϕf_0 , ϕf_2 ($f_S \rightarrow KK$ or $\phi\phi$) are OK.

 $\sqrt{\pi/K}$ mixed final state: OZI forbidden except for special cases (e.g. $\pi\pi$ -KK mixing).

 \checkmark baryon final state: $p\overline{p}$, $\Lambda\overline{\Lambda}$ are possible.

Thus, we consider the following channels...

h_c→φK+K⁻, φπ+π⁻, K^{*}⁰K^{*}⁰, pp̄, ΛΛ

Estimating h_c branching ratios

 \sim Simple extraction using the J/ ψ hadronic decays

Our preliminary predictions....

$$\begin{array}{rcl} Br(h_c \to \phi K^+ K^-) &\simeq & (0.52 \pm 0.12) \times 10^{-3} \\ Br(h_c \to \phi \pi^+ \pi^-) &\simeq & (0.54 \pm 0.12) \times 10^{-3} \\ Br(h_c \to p\bar{p}) &\simeq & (1.2 \pm 0.25) \times 10^{-3} \\ Br(h_c \to \Lambda \bar{\Lambda}) &\simeq & (0.92 \pm 0.20) \times 10^{-3} \end{array}$$

Estimating h_c branching ratios

 \sim Simple extraction using the J/ ψ hadronic decays

Simultaneous measurements of charmonium in the $p\overline{p}$ final states

Once we concentrate on the $p\overline{p}$ final state, we realise that most of the charmonium can decay to this channel.

Simultaneous measurements of charmonium in the $p\overline{p}$ final states

Once we concentrate on the $p\overline{p}$ final state, we realise that most of the charmonium can decay to this channel.

Simultaneous measurements of charmonium in the $p\overline{p}$ final states

Once we concentrate on the $p\overline{p}$ final state, we realise that most of the charmonium can decay to this channel.

✓ First measurement of h_c (and η_c) hadroproduction ✓ Re-determinations of the cross section of: $\sigma_{production}(J/\Psi)$ and $\sigma_{production}(\chi_{cJ})$ ✓ The puzzle of the χ_{cJ} cross section ratio: $\sigma_{production}(\chi_{c2})/\sigma_{production}(\chi_{c1})=(0.71+-0.04)_{exp}$ vs (5/3)_{th} ✓ Searching for the factorization forbidden B decays: $B \rightarrow h_c Xs$ and $B \rightarrow \chi_{c2} Xs$

etc etc...

Conclusions

- We proposed a LHCb search strategy of h_c with the pp final state.
- We investigated a possible simultaneous measurement of the different charmonium with this channel.
- Now the search at LHCb has started and...

Conclusions

- We proposed a LHCb search strategy of h_c with the pp final state.
- We investigated a possible simultaneous measurement of the different charmonium with this channel.
- Now the search at LHCb has started and...

