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Why are we interested in measuring the photon polarization
of b → sγ ?

b
W

s

t γ

M(b → sγ) =
4GF√

2
VtsV ∗tbF2

e
(4π)2

s̄σµνqν
“
mb

1 + γ5
2| {z }

bR→sLγL

+ ms
1− γ5

2| {z }
bL→sRγR

”
bεµ∗

In the SM since ms/mb � 1, photons are predominantly left
(right)-handed in the B̄(B)-decays.

NP can induce new Dirac structures and lead to an excess of
right(left)-handed photons, without contradicting with the measured
B(B → Xsγ).

The measurement of the photon polarization could provide a test of physics
beyond the SM, namely right-handed currents.
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Right-handed currents in NP beyond the SM

How much right-handed currents is allowed?

At present, Br measurements of the inclusive and exclusive b → sγ processes
do not put very strong constraints on the right-handed currents yet since it is
not a direct measurement (Br ∝ |MSM

L +MNP
L |2 + |MSM

R +MNP
R |2).

Some NP models predict significant contribution of the right-handed currents

For example, in SUSY the squark mass can come from any combination
of left and right couplings:

LMSSM
soft = Q̃†Lm2

QQ̃L + ˜̄u†Rm2
ū ˜̄uR + ˜̄d†Rm2

d̄
˜̄dR + vu ˜̄uRauQ̃L + vd

˜̄dRad Q̃L + . . .

The soft SUSY breaking terms induce the chirality flip on the internal
lines ⇒ this leads to the enhancement factor mg̃/mb compared to the
SM.

bL
g̃

sR
b̃L s̃R

γR(δd
RL)23

MSUSY
g̃ (bL → sRγR) ∝

mg̃ × (δd
RL)23 × loop
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Photon polarization determination: 3 methods

1 Method 1: CP asymmetry in Bq(t)→ f CPγ

Sf γ = −ξf
2|MLMR |

|ML|2 + |MR |2
sin(φM − φL − φR)

2 Method 2: transverse asymmetry in B0 → K∗0(→ K−π+)`+`−

A(2)
T = −MRM∗L +M∗RML

|MR |2 + |ML|2

3 Method 3: K1 three-body decay method in B → K1γ

λγ =
|MR |2 − |ML|2

|MR |2 + |ML|2
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1. CP-asymmery in B0 → K ∗0(→ KSπ
0)γ, Bs → φγ

∼ ms

∼ mb

B

B̄

f γL
∼ mb

∼ ms

B

B̄

f γR

Time-dependent CP-asymmetry in neutral B-mesons results from the
interference of mixing and decay [Atwood et al.,Phys.Rev.Lett.79 (’97)].

ACP(t) ≡ Γ(B̄q(t)→ f γ)− Γ(Bq(t)→ f γ)

Γ(B̄q(t)→ f γ) + Γ(Bq(t)→ f γ)
' Sf γ sin(∆mt)

Sf γ = −ξf
2|MLMR |

|ML|2 + |MR |2
sin(φM − φL − φR)

where φL,R = arg(ML,R) and φM is the Bq − B̄q mixing phase.

In the SM

b → sγ |MR/ML| ' ms/mb,
φL = φR ' 0

B0 − B̄0 φM = 2β ' 43◦

Bs − B̄s φM ' 0

⇒

8><>:
SKSπ0γ ' −(2ms/mb) sin(2β)

(Sexp
KSπ0γ = −0.15± 0.2)

Sφγ ' 0
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2. Transverse asymmetry in B0 → K ∗0(→ K−π+)`+`−

Analysis of the angular distributions in B0 → K∗0(→ K−π+)`+`− in the
low `+`− inv.mass region and measurement of the transverse asymmetry
[Kruger&Matias,Phys.Rev.D71(’05)].

d2Γ

dq2dφ
=

1
2π

dΓ

dq2
h
1 + FT (q2)

“
A(2)

T (q2) cos 2φ+ A(im)
T (q2) sin 2φ

”i

In the heavy quark and large
EK∗ limit (⇔ q2 → 0)

A(2)
T = −MRM∗L +M∗RML

|MR |2 + |ML|2 z

`−

`+

K−

π+

B0
K∗0

φ

θK∗

θ`
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3. K1 three-body decay method

In [Phys.Rev.Lett.88,Phys.Rev.D66(’02)] Gronau et al. proposed
that the angular distribution of the three-body decay of Kres in
B → Kresγ decay carries the photon polarization information.

γ
z

K ∗

π

K

symmetric

B

NO hel
icit

y info
rmatio

n 2→ 3-body

π

γ
zK1

π

K ∗
K

B

There are two known K1(1+) states, decaying into Kππ final state via
K∗π and ρK modes: K1(1270) and K1(1400).

One of the decay channels B → K1γ, namely B+ → K+
1 (1270)γ, is

finally measured (B = (4.3± 1.2)× 10−5), while B+ → K+
1 (1400)γ is

suppressed (B < 1.5× 10−5) [Belle (’05)].

We investigate the feasibility of determining the photon polarization using the
B → K1(1270)γ channel.
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3. K1 three-body decay method
Formalism

The decay distribution of B̄ → K̄1γ → (K̄ππ)γ is given by the master formula:

d3Γ
ds13ds23d cos θ ∝

1
4 | ~J |

2(1 + cos2 θ) + λγ
1
2 Im[~n · ( ~J × ~J ∗)] cos θ

λγ =
|MR |2 − |ML|2

|MR |2 + |ML|2

' −1(+1) + O(m2
s /m

2
b) in the SM

for B̄(B) respectively.

In order to determine λγ , compared to the
experimental decay distribution, we need a
precise expression for J .
In principle, J can be extracted from data
(e.g. Dalitz analysis of B → J/ψK1 [Belle
(’10)]) or computed within a quark model
[Kou,Le Yaouanc&A.T., in preparation].

K1-reference frame

~J = C1(s13, s23)~p1 − C2(s13, s23)~p2
⇔ K1-decay helicity amplitude.

;

;
~n = ~p1×~p2

|~p1×~p2|

γ

π+(~p1)

K+(~p3)

π−(~p2)

;
x y

z

θ

11 / 15



3. K1 three-body decay method
Formalism

The decay distribution of B̄ → K̄1γ → (K̄ππ)γ is given by the master formula:

d3Γ
ds13ds23d cos θ ∝

1
4 | ~J |

2(1 + cos2 θ) + λγ
1
2 Im[~n · ( ~J × ~J ∗)] cos θ

λγ =
|MR |2 − |ML|2

|MR |2 + |ML|2

' −1(+1) + O(m2
s /m

2
b) in the SM

for B̄(B) respectively.

In order to determine λγ , compared to the
experimental decay distribution, we need a
precise expression for J .
In principle, J can be extracted from data
(e.g. Dalitz analysis of B → J/ψK1 [Belle
(’10)]) or computed within a quark model
[Kou,Le Yaouanc&A.T., in preparation].

K1-reference frame

~J = C1(s13, s23)~p1 − C2(s13, s23)~p2
⇔ K1-decay helicity amplitude.

;

;
~n = ~p1×~p2

|~p1×~p2|

γ

π+(~p1)

K+(~p3)

π−(~p2)

;
x y

z

θ

11 / 15



3. K1 three-body decay method
New method

Up-down asymmetry

In the original proposal by Gronau et al., only the θ-dependence on the
polarization was considered (up-down asymmetry)

Aup−down =

R 1
0 d cos θ dΓ

d cos θ −
R 0
−1 d cos θ dΓ

d cos θR 1
−1 d cos θ dΓ

d cos θ

=
3

4
λγ

R
ds13ds23Im[~n · ( ~J × ~J ∗)]R

ds13ds23| ~J |2

New method

In our work, we take into account the Dalitz variable (s13,s23) dependence,
which carries the further information of the polarization (it was pointed out in
the ALEPH analysis of τ → a1(→ πππ)ν [Davier et al., Phys.Lett.B306
(’93)]). In this method, we use the quantity, called ω

ω(s13, s23, cos θ) ≡ 2Im[~n · ( ~J × ~J ∗)]cos θ
| ~J |2(1 + cos2 θ)

[Kou,Le Yaouanc&A.T., hep-ph/1011.6593]
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3. K1 three-body decay method
Results: Monte Carlo simulation

λγ ≡ Γ(B→K1RγR )−Γ(B→K1LγL)
Γ(B→K1γ)

' 1 + O(m2
s /m2

b) in the SM

We estimate the sensitivity of future experiments to λγ using “ideal” (i.e.
detector effects and background are not taken into account) MC simulation.

Expected λ(SM)
γ from B → K1(1270)γ:

Nevents 1k 10k
B+ → K+π−π+γ 1.00±0.18 1.00±0.06
B+ → K 0π+π0γ 1.00±0.12 1.00±0.04
B0 → K 0π+π−γ 1.00±0.18 1.00±0.06
B0 → K+π−π0γ 1.00±0.12 1.00±0.04

For 10k events the error on λγ is < 10%.

The use of the Dalitz plot information
improves the sensitivity by a factor 2
compared to the pure angular cos θ-fit.

[Kou,Le Yaouanc&A.T., hep-ph/1011.6593]

Exclusion plot for λ
(SM)
γ for

B+ → (K 0π+π0)K1(1270)+γ

γλ
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Future constraints on right-handed currents

B(B → Xsγ)exp =
(3.55± 0.24± 0.09)× 10−4

ACP(B → KSπ
0γ) measurement

Sexp
KSπ0γ = −0.15± 0.2
σ(S)LHCb ≈ 0.2 at 2 fb−1,
σ(S)SuperB ≈ 0.02 at 75 ab−1,
σ(S)BelleII ≈ 0.03 at 50 ab−1.

λγ potential measurement from
ω-distribution in
B → (Kππ)K1(1270)γ.
σ(λγ)th ∼ 0.2

A(2)
T potential measurement from

angular analysis of
B0 → K∗0(→ K−π+)`+`−.
σ(A(2)

T )LHCb ≈ 0.2 at 2 fb−1.

((δd
LR)23 = (δd

LL)23 = (δd
RR)23 = 0)

-0.010 -0.005 0.000 0.005 0.010
-0.010

-0.005

0.000

0.005

0.010

ReH∆RLL23
Im

H∆
R

L
L 2

3

[Becirevic,Kou,Lefrancois,Schune,A.T.,
work in progress]
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σ(S)LHCb ≈ 0.2 at 2 fb−1,
σ(S)SuperB ≈ 0.02 at 75 ab−1,
σ(S)BelleII ≈ 0.03 at 50 ab−1.

λγ potential measurement from
ω-distribution in
B → (Kππ)K1(1270)γ.
σ(λγ)th ∼ 0.2

A(2)
T potential measurement from

angular analysis of
B0 → K∗0(→ K−π+)`+`−.
σ(A(2)

T )LHCb ≈ 0.2 at 2 fb−1.

((δd
LR)23 = (δd

LL)23 = (δd
RR)23 = 0)
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Conclusions and perspectives

1 We study the B → K1γ decay to determine the photon polarization in
the b → sγ process in order to search the effects of New Physics beyond
the SM.

2 We propose a new quantity ω(s13, s23, cos θ), which contains all the
information on polarization in each event and allows to reduce the error
on λγ by a factor 2, compared to the fit of pure cos θ-distribution.

3 We obtain the statistical accuracy < 10% for the SM-prediction for λγ
for 10k events of the B → K1(1270)γ decay.

4 Perspective: the right-handed currents will be very strictly constrained by
the future experiments, LHCb and SuperB. I showed an example of SUSY
with large RL mass insertion. It was demonstrated that combining the
three methods, we will be able to constrain (δd

RL)23 at the level of 10−3.
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B → K1(1+) form factors
The matrix element of the leading operator O7 can be parametrized in terms of
hadronic form factors using the following conventions:

〈K1|s̄σµνγ5qνb|B̄〉 = iεµνρσεν∗K1p
ρ
BpσK12F

K1
1 (q2)

〈K1|s̄σµνqνb|B̄〉 = FK1
2 (q2)

ˆ
ε∗K1µ(m2

B −m2
K1)− (ε∗K1 · pB)(pB + pK1)µ

˜
+ FK1

3 (q2)(ε∗K1 · pB)

"
qµ −

q2

m2
B −m2

K1

(pB + pK1)µ

#

FK1
1 (0) = FK1

2 (0) in order to avoid a kinematic singularity at q2 = 0.
Since the outgoing photon is on-shell, q2 = 0 and qµε∗µ = 0 ⇒ the last
term, proportional to FK1

3 , vanishes and hence the matrix element is
parametrized with only one form factor FK1

1 (0):

〈K1LγL|O7L|B̄〉 = 〈K1RγR |O7R |B̄〉 = i
e

8π2
mb(m2

B −m2
K1)FK1

1 (0)

The form factors of the mass eigenstates are related to FK1A,B
1 , which can

be calculated with LCSR, as following:

FK1(1270)
1 (0) = FK1A

1 (0) sin θK1 + FK1B
1 (0) cos θK1

FK1(1400)
1 (0) = FK1A

1 (0) cos θK1 − FK1B
1 (0) sin θK1
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A→ Vij(→ PiPj)Pk decay

The decay amplitude of the axial-vector meson A to some vector (Vij )
and pseudoscalar (Pk) mesons can be expressed in the following Lorentz
invariant form:

M(A→ VijPk) = ε(A)
µ Tµνε

(Vk )∗
ν , Tµν = f gµν + hpµVij

pνA

The unknown effective couplings f and h can be related to the partial
wave amplitudes aS and aD as

f = −
„

aS +
aD√
2

«
, h =

»„
1−

mVij

EVij

«
aS +

„
1 + 2

mVij

EVij

«
aD√
2

– EVij

mA~p2k

where EVij and ~pk(= −~pVij ) are the energy of the vector meson and the
momentum of pseudoscalar meson in the A-reference frame.

The amplitude of the subsequent decay Vij → PiPj can be parametrized
in terms of the effective coupling gVijPi Pj (which can be determined from
the measured partial decay width of Vij ):

M(Vij → PiPj ) = gVijPi Pj · ε
(Vij )
µ (pi − pj )

µ
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A→ Vij(→ PiPj)Pk decay
Parametrizing the propagation of Vij with the relativistic Breit-Wigner form
BWVij (sij ) = 1/(sij −m2

Vij
− imVij ΓVij ), one can write the total amplitude of

the A-decay chain as

M(A→ (PiPj )Vij Pk) = ε(A)
µ (f gµν+hpµVij

pνA)ε
(Vij )∗
ν BWVij (sij )gVijPi Pj ε

(Vij )
σ (pi−pj )

σ

Summing over the Vij -polarizations, one obtains the total Lorentz invariant
amplitude:

M(A→ (PiPj )Vij Pk) = ε(A)
µ Jµijk , Jµijk = ck(sij )pµk − ci (sij )pµi

ck(sij ) = gVijPi Pj

"
−(f + h(m2

A − pA · pk))

 
1 +

m2
i −m2

j

m2
Vij

!
+ 2h(pA · pi )

#
BWVij (sij )

ci (sij ) = 2gVijPi Pj f BWVij (sij )

If there are several possible channels of the A-decay to the same charged final
state P1P2P3, one has to sum over the all possible diagrams with different
intermediate vector resonance states:

M(A→ P1P2P3) =
X
Vij

(Ii , I z
i ; Ij , I z

j |IVij , I
z
Vij )(IVij , I

z
Vij ; Ik , I

z
k |IA, I z

A)

×M(A→ (PiPj )Vij Pk) = ε(A)
µ J µ = ε(A)

µ (C1(s13, s23)pµ1 − C2(s13, s23)pµ2 )
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Estimating the J -function

J -function represents the K1 → Kππ decay amplitude.

Assuming that this process comes from the vector-pseudoscalar meson
intermediate state, K1 → VP1 → P1P2P3, J contains

two form factors for K1 → VP1 (one can express them in terms of S and
D partial wave amplitudes)

one coupling for V → P2P3

which, in principle, can be determined from the experiment. But due the non
sufficient amount of data we have to use some model to predict J .

I Therefore in the following, we estimate the K1 → VP1 (namely
K1 → K∗π, K1 → ρK) form factors in the framework of the 3P0

quark-pair-creation model [Kou,Le Yaouanc&A.T., in preparation].

[Daum et al., Nucl.Phys.B187 (’81)]:

B(K1(1400)→ ρK)/B(K1(1400)→ K∗π) = 0.01± 0.01

B(K1(1400)→ (K∗π)D)/B(K1(1400)→ (K∗π)S ) = 0.04± 0.01

B(K1(1270)→ ρK)/B(K1(1270)→ K∗π) = 4.16± 1.56

B(K1(1270)→ (K∗π)D)/B(K1(1270)→ (K∗π)S ) = 0.54± 0.15
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3P0 Qark-Pair-Creation Model (QPCM)

In order to compute J , we use QPCM [Le Yaouanc et al., Phys.Rev.D8 (’73),
Phys.Rev.D9 (’74)] to describe the intermediate K1 → K∗π, ρK decays.

1 QPCM is one of the simplest and most successful quark models which
has a good predictive power.

2 The model has just one(!) universal phenomenological parameter- the
quark pair-creation constant γ.

3 It is very good especially to compute the P-wave particles (and in this
sense, better than the flux-tube-breaking model, for some case).

Basic idea

Instead of being created from quark lines, qq̄ is
created from anywhere within the hadronic matter
and has the quantum numbers of the vacuum ⇒
qq̄-pair must be in a 3P0 state, SU(3) singlet and
of null momentum.

q1(~k1)

q̄2(~k2)

γ
q̄(~k4)

q(~k3)
A

P

V
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K1-mixing angle issue

To understand the K1 → K∗π, ρK decays, first one has to explain the
observed hierarchy [Daum et al., Nucl.Phys.B187 (’81)]:

B(K1(1400)→ ρK)/B(K1(1400)→ K∗π) = 0.01± 0.01

B(K1(1400)→ (K∗π)D)/B(K1(1400)→ (K∗π)S) = 0.04± 0.01

B(K1(1270)→ ρK)/B(K1(1270)→ K∗π) = 4.16± 1.56

B(K1(1270)→ (K∗π)D)/B(K1(1270)→ (K∗π)S) = 0.54± 0.15

It can be explained with the help of the K1 mixing angle: mass
eigenstates K1(1270) and K1(1400) are considered as mixtures of
13P1(K1A) and 11P1(K1B) states [Suzuki, Phys.Rev.D47 (’93)]:

|K1(1270)〉 = |K1A〉sin θK1 + |K1B〉cos θK1

|K1(1400)〉 = |K1A〉cos θK1 − |K1B〉sin θK1

Most interestingly, this mixing angle can give a good explanation of the
observed suppression of the B → K1(1400)γ channel [Yang et al.,
Phys.Rev.Lett.94 (’05); Hatanaka&Yang, Phys.Rev.D77 (’08)]:

B(B → K1(1400)γ)/B(B → K1(1270)γ) < 0.35

22 / 15



QPCM predictions for the K1-decays

Partial wave amplitudes

aS(K1(1270)→ K∗π/ρK) = SK∗/ρ(
√
2sin θK1 ∓ cos θK1)

aD(K1(1270)→ K∗π/ρK) = DK∗/ρ(−sin θK1 ∓
√
2cos θK1)

aS(K1(1400)→ K∗π/ρK) = SK∗/ρ(
√
2cos θK1 ± sin θK1)

aD(K1(1400)→ K∗π/ρK) = DK∗/ρ(−cos θK1 ±
√
2sin θK1)

SV = γ

r
3
2

2IV
1 − IV

0
18

, DV = γ

r
3
2
IV
1 + IV

0
18

IV
m=0,±1 =

1
8

Z
d3~kYm

1 (~kP − ~k)ψ
(P)
0 (~k)ψ

(V )
0 (−~k)ψ

−m(K1)
1 (~kP + ~k)

Fitting the combination of the ratios of measured branching fractions, we
found θK1 ' 50◦.

Using this model and the fitted value of θK1 , we obtained the
K1 → K∗π, ρK form factors and thus the J -function.

23 / 15



Spacial integrals in QPCM

For the axial meson decay (A = K1A,B ) into the ground states of vector (V = K∗/ρ) and pseudoscalar
(P = π/K) mesons, the spacial integrals are given by

IV
m=0,±1 =

Z
d3~k1d3~k2d3~k3d3~k4δ(~k1 + ~k2 − ~kA)δ(~k2 + ~k3 − ~kV )δ(~k4 + ~k1 − ~kP )δ(~k3 + ~k4)

×Ym
1 (~k3 − ~k4)ψ(A)(~k1 − ~k2)ψ(V )(~k2 − ~k3)ψ(P)(~k4 − ~k1)

=
1

8

Z
d3~kYm

1 (~kP − ~k)ψ
(P)
0 (~k)ψ

(V )
0 (−~k)ψ

−m(A)
1 (~kP + ~k)

where ψLz
L are the normalized Fourier transforms of harmonic oscillator meson wave functions:

ψ
(i )
0 (~k) =

R3/2
i
π3/4 exp

 
−
~k2R2

i
8

!
, ψ

m(i )
1 (~k) =

s
2

3

R5/2
i
π1/4 Y

m
1 (~k) exp

 
−
~k2R2

i
8

!

Here Ym
1 (~k) = |~k|Ym

1 (~̂k) = (~εm~k)
p
3/4π, Ri is the meson wave function radius and ~εm are the

polarization vectors, defined as ~ε0 = (0, 0, 1), ~ε±1 = ∓ 1√
2

(1,±i, 0).

IV
0 = −

4
√
3

π5/4
R5/2

A (RV RP )3/2

(R2
A + R2

V + R2
P )5/2

 
1− ~k2

P
(2R2

A + R2
V + R2

P )(R2
V + R2

P )

4(R2
A + R2

V + R2
P )

!
exp

"
−~k2

P
R2

A(R2
V + R2

P )

8(R2
A + R2

V + R2
P )

#

IV
1 =

4
√
3

π5/4
R5/2

A (RV RP )3/2

(R2
A + R2

V + R2
P )5/2

exp

"
−~k2

P
R2

A(R2
V + R2

P )

8(R2
A + R2

V + R2
P )

#
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Maximum likelihood method

Our probability density function (i.e. the normalized decay width
distribution) can be written as

W (s13, s23, cos θ) = f (s13, s23, cos θ) + λγg(s13, s23, cos θ) = f (1 + λγω)

Then, the log-likelihood function for a sample of N measurements is:

lnL = ln
NY

i=1

W (s i
13, s

i
23, cos θi ) =

NX
i=1

ln(1 + λγωi )

+other terms independent of λγ
Using the maximum likelihood method, we obtain λγ as a solution of the
following equation:

∂ lnL
∂λγ

=
NX

i=1

ωi

1 + λγωi
= N〈 ω

1 + λγω
〉 = 0

Notice: resulting solution does not depend on f and g separately but
only on their ratio ω.

Since W depends on λγ linearly, one can reduce a multi-dimensional fit to a
one-dimensional, using variable ω ≡ g/f ! [Davier et al., Phys.Lett.B306 (’93)]
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Approximate solution for λγ

Example of ω-distribution for 10k of B+ →
(K+π−π+)K1(1270)γ events with purely
right-handed (red) and left-handed (blue)
photons.
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NO fit is needed to extract λγ

When λγω � 1:

∂ lnL
∂λγ

' N(〈ω〉 − λγ〈ω2〉) = 0

⇒ λγ '
〈ω〉
〈ω2〉

1
σ2λ

= −∂
2 lnL
∂λγ2

= N〈
„

ω

1 + λγω

«2

〉

⇒ σ2λ '
1

N
“
〈ω2〉 − 2 〈ω〉〈ω

3〉
〈ω2〉

”
We only has to sum ω and ω2 over all
the events (no fit is needed).
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Comparison with the other methods: ACP(B → f CPγ)

Here we compare the precision of x ≡ |ML/MR | measurement, using the meth-
ods of the ACP(t) measurement in B0 → (KSπ

0)K∗γ, Bs → φγ and λγ = 1−x2

1+x2

determination in B → (Kππ)K1γ.

The error of x determination
will be dependent on the
measured value of λγ(⇔ x):

σx =
(1 + x2)2

4x
σλγ

For some values of x ,
considerably different from the
SM (i.e. 0), one can obtain a
better sensitivity, compared to
the ACP -method.

ΣΛΓ
=0.05

ΣΛΓ
=0.10

ΣΛΓ
=0.15

ΣΛΓ
=0.20

SM
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Σ
x

For instance, one can see from the Fig. that if we measure λγ < 0.9(⇔ x > 0.3) with

the error σλγ ≈ 0.1, we can have a smaller error on x , compared to the estimated

σx ' 0.1 from potential measurement of ACP at LHCb [LHCB-ROADMAP4-001].
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Estimating the hadronic uncertainties
ρK/K∗π phase issue example

Im[~n · ( ~J × ~J ∗)] is sensitive to the relative phase between K∗π and ρK .

The relative sign of two amplitudes, predicted by QPCM, can be verified
using the recent exp. data on the B → Kππψ decay [Belle (’10)].
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The interference between the ρK and K∗π amplitudes is responsible for
the abrupt fading of the K∗(892) signal at MKπ > MK∗(892).

We confirm the sign, predicted by QPCM.
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