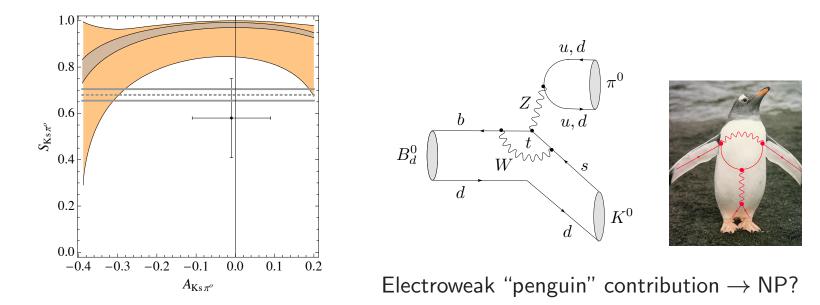
B-Physics Probes for New Physics in the LHC Era

Robert Fleischer

Nikhef (Theory Group)

Portorož 2011: The Role of Heavy Fermions in Fundamental Physics Portorož, Slovenia, 11–14 April 2011

- Setting the Stage
- <u>B Physics in the LHC Era:</u> \rightarrow Promising Channels for NP Signals:
 - $B_s^0 \rightarrow J/\psi\phi$: critical look at hadronic corrections.
 - $B_s^0 \to K^+ K^-$, $B_d^0 \to \pi^+ \pi^-$: picture from current data.
 - $B_s^0 \rightarrow \mu^+ \mu^-$: fragmentation functions are crucial for measurement.
- Concluding Remarks



Setting the Stage

(New) Flavour Physics: Where Do We Stand?

- Lessons from the B, D, K, ... data collected so far:
 - CKM matrix is the dominant source of flavour and CP violation.
 - New effects not yet established, although there are potential signals:
 - * *Example:* CP violation in $B^0 \to \pi^0 K_{\rm S}$

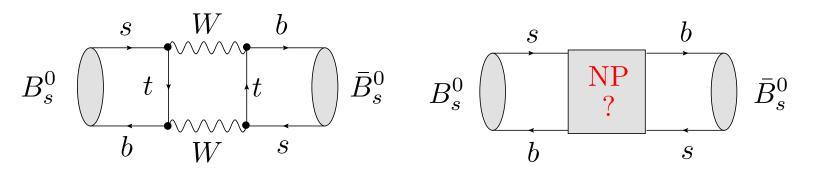
$$\frac{\Gamma(\bar{B}^{0}(t) \to \pi^{0}K_{\rm S}) - \Gamma(B^{0}(t) \to \pi^{0}K_{\rm S})}{\Gamma(\bar{B}^{0}(t) \to \pi^{0}K_{\rm S}) + \Gamma(B^{0}(t) \to \pi^{0}K_{\rm S})}$$
$$= A_{\pi^{0}K_{\rm S}}\cos(\Delta M_{d} t) + S_{\pi^{0}K_{\rm S}}\sin(\Delta M_{d} t)$$

[R.F., S. Jäger, D. Pirjol & J. Zupan ('08); update: Jure Zupan @ Beauty 2011]

• Implications for the structure of New Physics (NP):

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm NP}(\varphi_{\rm NP}, g_{\rm NP}, m_{\rm NP}, \dots)$

- Large characteristic NP scale $\Lambda_{\rm NP}$, i.e. not just \sim TeV, which would be bad news for the direct searches at ATLAS and CMS, or (and?) ...
- Symmetries prevent large NP effects in FCNCs and the flavour sector; most prominent example: *Minimal Flavour Violation (MFV)*:


 \rightarrow essentially the same CP & flavour violation as in the SM.

- <u>Comments:</u>
 - MFV is still far from being experimentally established!
 - There are various non-MFV scenarios with room for sizeable effects: SUSY, warped extra dimensions, little Higgs, 4th generation, Z', ...
 - Nevertheless, we have to be prepared to deal with "smallish" NP effects.
- Excellent news:
 - We are at the beginning of a new era in particle physics: \rightarrow LHC era

B Physics in the LHC Era:

 \rightarrow promising probes for New Physics ...

* Search for NP in $B_s^0 - \bar{B}_s^0$ mixing:

Standard Model

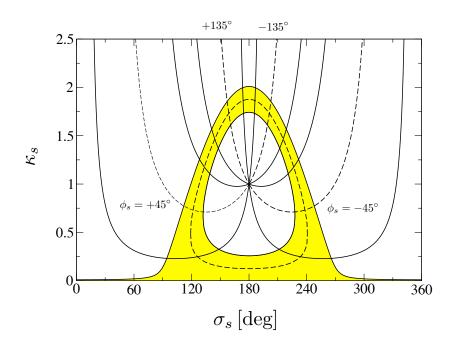
New Physics (e.g. SUSY, Z' models)

 \diamond FCNC process: \Rightarrow strongly suppressed in the SM ("box" diagrams)

 \star involves a CP-violating phase $\phi_s = \phi_s^{\rm SM} + \phi_s^{\rm NP}$

ightarrow SM piece is tiny: $\phi_s^{
m SM} pprox -2^\circ$

 \Rightarrow | sensitive probe for NP

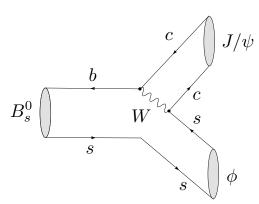

 $[\rightarrow$ also the talks by Fulvia De Fazio & Alexander Lenz]

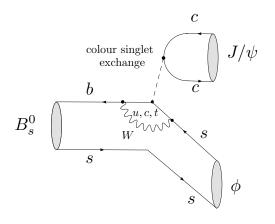
Constraints on NP Parameter Space

• Parameter (complex number) to characterize NP in $B_s^0 - \bar{B}_s^0$ mixing:

$$\kappa_s e^{i\sigma_s} \equiv \text{``NP'' / ``SM''} \Rightarrow$$

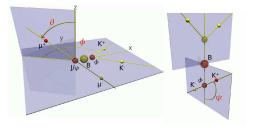
- Mass difference: $\Delta M_s = \Delta M_s^{\text{SM}} \left| 1 + \kappa_s e^{i\sigma_s} \right|$
- Mixing phase: $\phi_s = \phi_s^{SM} + \phi_s^{NP} = \phi_s^{SM} + \arg(1 + \kappa_s e^{i\sigma_s})$
- Allowed region in the σ_s - κ_s plane:




 $\Delta M_s \Rightarrow$ yellow band;

 $\phi_s \Rightarrow \text{contours} \dots$

[Details: Patricia Ball & R.F. (2006)]


CP Violation in $B^0_s ightarrow J/\psi \phi$

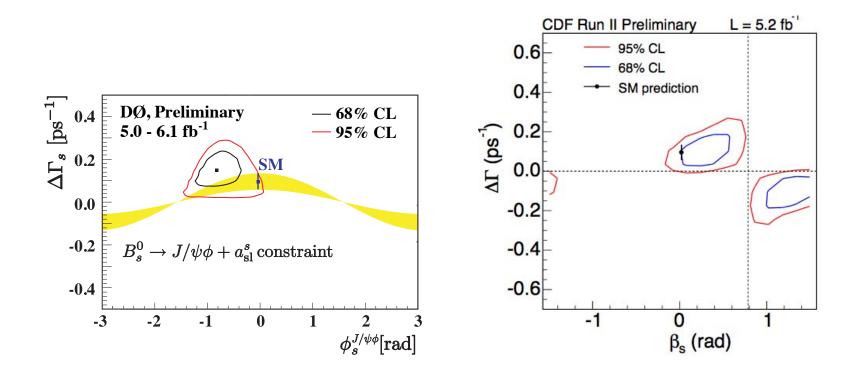
- Interference effects through $B_s^0 \bar{B}_s^0$ mixing:
 - *Mixing-induced* CP violation in time-dependent rates.
 - Hadronic parameters cancel to good approximation:

 \Rightarrow CP asymmetries $\sim \sin \phi_s$

 $J/\psi\phi$

 $e^{-i\phi_s}$

• Final state is mixture of CP-odd and -even eigenstates:

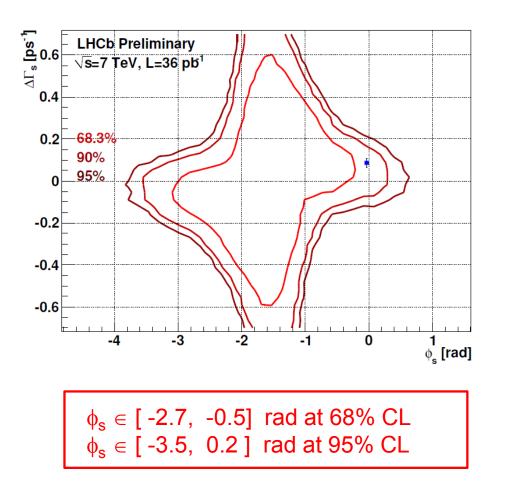

 \rightarrow disentangle through $J/\psi[\rightarrow \mu^+\mu^-]\phi[\rightarrow K^+K^-]$ angular distribution.

• <u>Smallish CPV in the SM</u>: \Rightarrow sensitive probe for NP in $B_s^0 - \bar{B}_s^0$ mixing

[Dighe, Dunietz & R.F. ('99); Dunietz, R.F. & Nierste ('01); Faller, R.F. & Mannel ('08)]

Tevatron $B^0_s ightarrow J/\psi \phi$ Results

• Current picture (early '11 and Summer '10): [Dictionary: $\phi_s = -2\beta_s$]



- DØ includes also the anomalous like-sign dimuon charge asymmetry;
- CDF plot uses only $B_s \rightarrow J/\psi\phi$ data. [\rightarrow talk by Michal Kreps]

• <u>Bad news:</u> situation is (still...) not conclusive (?)

LHCb $B^0_s ightarrow J/\psi \phi$ Results

 \rightarrow | first constraints in the ϕ_s - $\Delta \gamma_s$ plane form a *tagged* analysis:

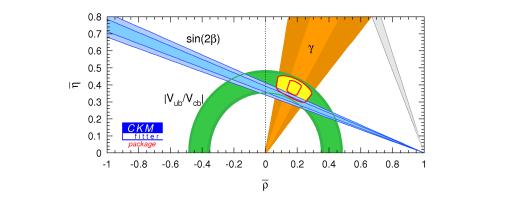
 \Rightarrow consistent with the Tevatron results \rightarrow stay tuned ...

[Uli Uwer @ Beauty 2011, LHCb-Conf-2011-006]

Prospects for $B_s ightarrow J/\psi \phi$ @ LHCb

- Experimental reach @ LHCb: very impressive ...
 - 2011 LHCb data should allow world's best ϕ_s measurement.
 - One nominal year of operation, i.e. $2 \, {\rm fb}^{-1}$: $\sigma(\phi_s)_{\rm exp} \sim 1^{\circ}$
 - LHCb upgrade with integrated lumi of 100 fb⁻¹: $\sigma(\phi_s)_{exp} \sim 0.2^{\circ}$
- <u>However</u>: SM penguin effects were so far fully neglected:¹

 $A(B_s^0 \to J/\psi\phi) \propto \mathcal{A}_f \left[1 + \lambda^2 (ae^{i\theta})e^{i\gamma}\right]$


- Impact of these corrections: $\mathcal{A}_{CP}^{mix} = \sin \phi_s \rightarrow \sin(\phi_s + \Delta \phi_s).$
- Hadronic shift $\Delta \phi_s$ can be controlled through $B_s^0 \rightarrow J/\psi \bar{K}^{*0}$. [CDF reported observation of this channel @ ICHEP 2010; LHCb @ Beauty 2011]
- <u>Two scenarios</u>: $[\Delta \phi_s \text{ must in any case be controlled to match LHCb accuracy]$
 - Optimistic: $\mathcal{A}_{CP}^{mix} \sim -40\%$ would be an unambiguous signal of NP!
 - $Pessimistic: A_{CP}^{mix} \sim -(5...10)\%$ would require more work from theorists and experimentalists to clarify the picture ...

[S. Faller, R.F. & T. Mannel, Phys. Rev. D79 ('09) 014005 [arXiv:0810.4248 [hep-ph]]]

 $^{^{1}\}lambda \equiv |V_{us}| = 0.22$ is the Wolfenstein parameter.

Implications of the Data for the B_d^0 System

• Tension in fit of UT:
$$(\phi_d)_{J/\psi K^0} - 2\beta_{\text{true}} = -(8.7^{+2.6}_{-3.6} \pm 3.8)^\circ \rightarrow |\text{NP!?}|$$

• <u>SM corrections</u>: doubly Cabibbo-suppressed penguins $|(\lambda \equiv |V_{us}| = 0.22) \rightarrow$

$$A(B_d^0 \to J/\psi K_{\rm S}) \propto \left[1 + \epsilon a e^{i\theta} e^{i\gamma}\right] \left[(\epsilon \equiv \lambda^2/(1-\lambda^2) \sim 0.05) \right]$$

• Generalized expression for mixing-induced CP violation: $[\phi_d = 2\beta + \phi_d^{NP}]$

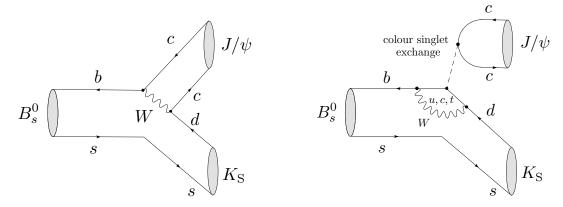
$$\frac{S(B_d \to J/\psi K_{\rm S})}{\sqrt{1 - C(B_d \to J/\psi K_{\rm S})^2}} = \sin(\phi_d + \Delta\phi_d)$$

$$\sin \Delta \phi_d \propto 2\epsilon a \cos \theta \sin \gamma + \epsilon^2 a^2 \sin 2\gamma$$
$$\cos \Delta \phi_d \propto 1 + 2\epsilon a \cos \theta \cos \gamma + \epsilon^2 a^2 \cos 2\gamma$$

•
$$\Delta \phi_d \ cannot \ be \ calculated: \Rightarrow use \ B^0_d \to J/\psi \pi^0 \ data \ \& \ SU(3)$$

– Fit to all current data, allowing also for SU(3)-breaking corrections:

 $\Rightarrow \Delta \phi_d \in [-6.7, 0.0]^{\circ}$, i.e. softens the tension in the fit of the UT.


– NP mixing phase: $\phi_d^{\text{NP}} \in [-14.9, 4.0]^\circ$, i.e. no significant effect.

• Observation:

- The quality of the *B*-factory data has essentially reached a level of precision where subleading SM effects have to be included!
- This will be even much more relevant in the LHC era, but $B_d^0 \rightarrow J/\psi \pi^0$ is very challenging for this experiment (super-*B* factory could do) \Rightarrow

[S. Faller, R.F., M. Jung & T. Mannel (2008)]

A New Channel for LHCb: $B^0_s
ightarrow J/\psi K_{
m S}$

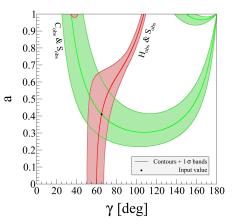
 $A(B_s^0 \to J/\psi K_{\rm S}) \propto \mathcal{A}\left[1 - a e^{i\theta} e^{i\gamma}\right]$

• U-spin symmetry:²
$$B_s^0 \to J/\psi K_S \Leftrightarrow B_d^0 \to J/\psi K_S$$
 [R.F. (1999)]

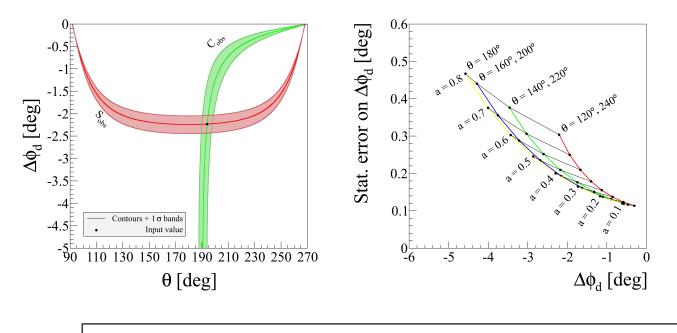
- Determination of the UT angle γ .
- Control of penguins in the determination of ϕ_d from $B_d^0 \to J/\psi K_{\rm S}$.
- CDF reported observation @ ICHEP2010: \rightarrow first BR measurement:

 $(3.53 \pm 0.61 (\text{stat.}) \pm 0.35 (\text{syst.}) \pm 0.43 (\text{frag.}) \pm 0.13 (\text{PDG})) \times 10^{-5}$

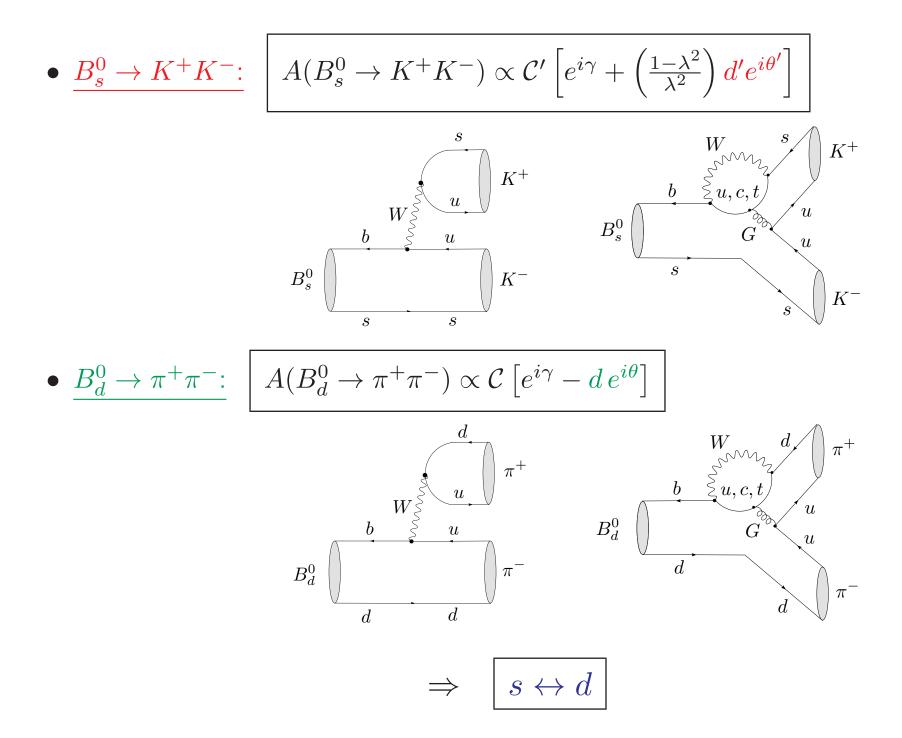
– SU(3) flavour-symmetry test:


$$\Xi_{SU(3)} \equiv \frac{\mathsf{BR}(B_s^0 \to J/\psi \bar{K}^0)}{2\mathsf{BR}(B_d^0 \to J/\psi \pi^0)} \frac{\tau_{B_d}}{\tau_{B_s}} \frac{\Phi_{J/\psi \pi^0}^d}{\Phi_{J/\psi K_{\mathrm{S}}}^s} = 1.01 \pm 0.25 \xrightarrow{SU(3)} 1$$

 $^{^{2}}U$ spin is an SU(2) subgroup of strong $SU(3)_{\rm F}$ relating down and strange quarks to each other.


• Fresh look: [with Kristof De Bruyn & Patrick Koppenburg, arXiv:1010.0089 [hep-ph]]

- First LHCb (toy) feasibility study: $ightarrow \gamma$ extraction;
- Main application: control of the penguin effects in $(\phi_d)_{J/\psi K_S}$:

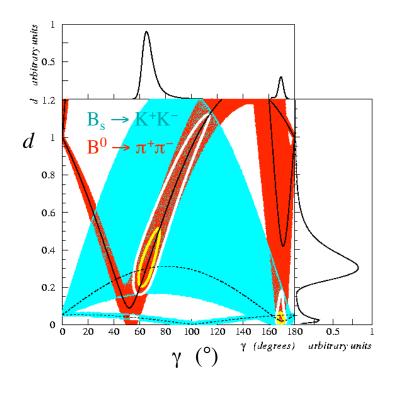

 \Rightarrow interesting study for the LHCb upgrade [100 fb⁻¹]

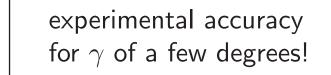
The

$B_s \to K^+ K^-$, $B_d \to \pi^+ \pi^-$

System

Decay Topologies & Amplitudes


• The decays $B_d \to \pi^+\pi^-$ and $B_s \to K^+K^-$ are related to each other through the interchange of all down and strange quarks:


$$U\text{-spin symmetry} \quad \Rightarrow \quad d' = d, \ \theta' = \theta$$

- Determination of γ and hadronic parameters $d(=d'), \ \theta$ and $\theta'.$
- Internal consistency check of the U-spin symmetry: $\theta \stackrel{?}{=} \theta'$.

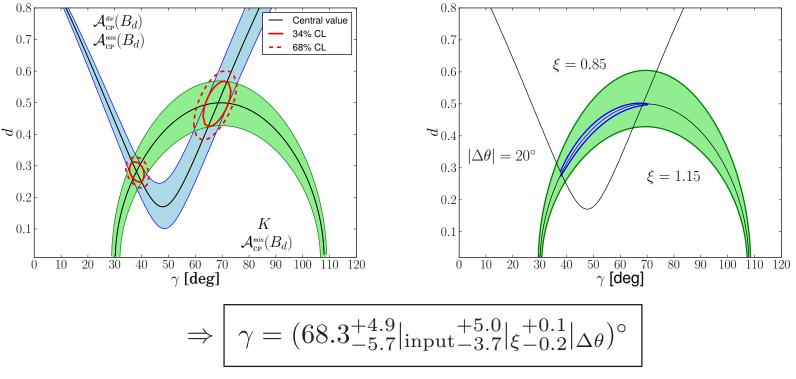
[R.F., Phys. Lett. B459 (1999) 306 [hep-ph/9903456]]

• Detailed studies show that this strategy is very promising for LHCb:

LHCb Collaboration (B. Adeva *et al.*) LHCb-PUB-2009-029, arXiv:0912.4179v2

Let's have a fresh look:

\rightarrow get ready for LHCb data...

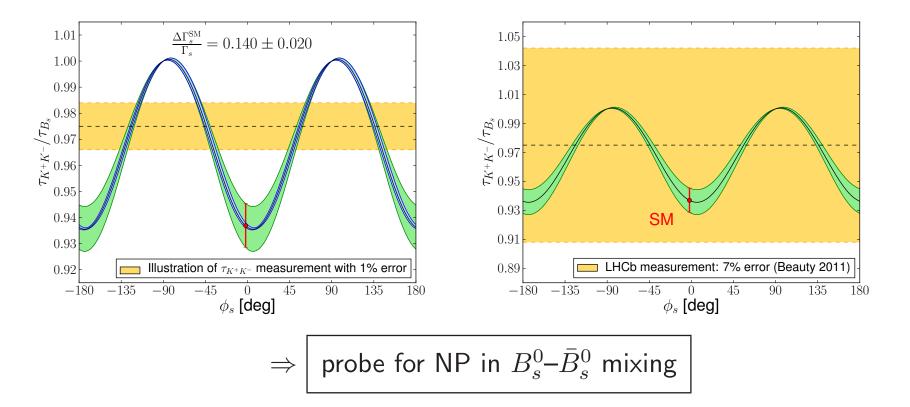

- Use *B*-factory data as input, as well as ...
- $BR(B_s \to K^+K^-)$ measurements by CDF and Belle @ $\Upsilon(5S)$,
- updated information of *U*-spin-breaking form-factor ratios.

[with Robert Knegjens, Eur. Phys. J. C71 (2011) 1532 [arXiv:1011.1096 [hep-ph]]]

Current Picture for γ

- Input data:
 - Information on $K \propto BR(B_s \to K^+K^-)/BR(B_d \to \pi^+\pi^-)$;
 - CP violation in $B^0_d \to \pi^+\pi^-$ and $B^0_d \to \pi^\mp K^\pm$;
 - U-spin-breaking corrections: $\xi \equiv d'/d = 1 \pm 0.15$, $\Delta \theta \equiv \theta' \theta = \pm 20^{\circ}$:

(2-fold ambiguity can be resolved [R.F. ('07)])


- <u>Fits of the UT:</u> $\gamma = (67.2^{+3.9}_{-3.9})^{\circ}$ (CKMfitter), $(69.6 \pm 3.1)^{\circ}$ (UTfit).
 - \Rightarrow disfavours large CP-violating NP contributions to decay amplitudes.

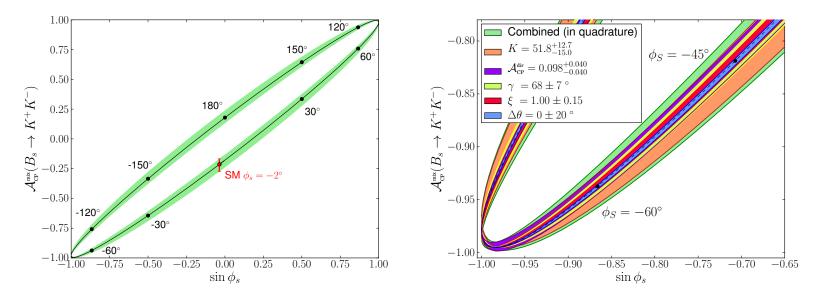
The Effective $B^0_s ightarrow K^+K^-$ Lifetime

• Particularly nice and simple observable: $[\langle \Gamma(B_s(t) \to f) \rangle \to \text{``untagged'' rate}]$

$$\tau_{K^+K^-} \equiv \frac{\int_0^\infty t \, \left\langle \Gamma(B_s(t) \to K^+K^-) \right\rangle \, dt}{\int_0^\infty \left\langle \Gamma(B_s(t) \to K^+K^-) \right\rangle \, dt}$$

• Using K, $\mathcal{A}_{CP}^{dir}(B_d \to \pi^{\mp} K^{\pm})$ and $\gamma = (68 \pm 7)^{\circ} [\oplus U\text{-spin-breaking}]$:

• <u>First LHCb result</u>: [\rightarrow talk by Vincenzo Vagnoni @ Beauty 2011]

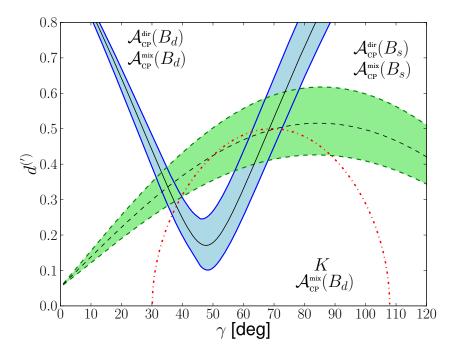

 $\tau_{K^+K^-} = (1.440 \pm 0.096 \pm 0.010) \, \mathrm{ps}$

Mixing-Induced $B^0_s \rightarrow K^+K^-$ CP Asymmetry

• The next observable to enter the stage: $\mathcal{A}_{CP}^{mix}(B_s \to K^+K^-)$

$$a_{\rm CP}(t) = \frac{\mathcal{A}_{\rm CP}^{\rm dir}\cos(\Delta M_s t) + \mathcal{A}_{\rm CP}^{\rm mix}\sin(\Delta M_s t)}{\cosh(\Delta\Gamma_s t/2) + \mathcal{A}_{\Delta\Gamma}\sinh(\Delta\Gamma_s t/2)}$$

• Using K, $\mathcal{A}_{CP}^{dir}(B_d \to \pi^{\mp} K^{\pm})$, $\gamma \oplus U$ -spin-breaking effects: \Rightarrow


- Correlation is very robust with respect to uncertainties.
- Allows also an unambiguous determination of ϕ_s with $\sin \phi_s$.

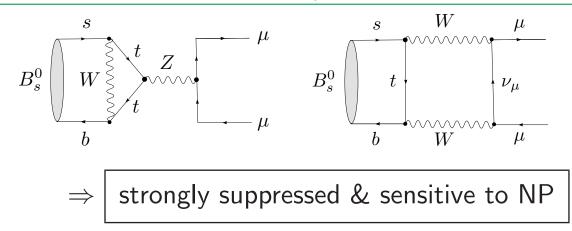
 \Rightarrow Another interesting probe for NP in $B_s^0 - \bar{B}_s^0$ mixing

Optimal Determination of γ

• Measurement of the CP asymmetries of $B_s^0 \to K^+ K^-$:

[Green band represents the 1σ errors of the current SM projection.]

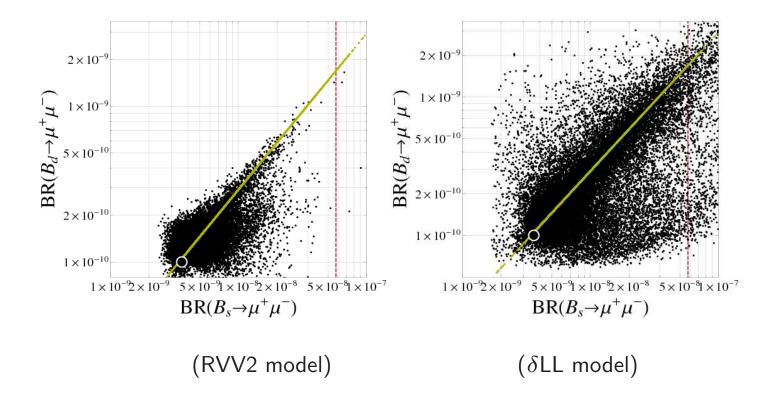
- Intersection with the γ -d contour fixed through the CP asymmetries of $B_s^0 \to \pi^+\pi^-$ allows us to determine γ , d = d' and θ , $\theta' [\to U$ -spin test].
- Expect a stable situation with respect to U-spin-breaking corrections.


Search for New Physics

Search for New Physics in $B^0_s ightarrow \mu^+ \mu^-$

• Only loop contributions in the SM ("penguins' & "box" diagrams):

• <u>Hadronic sector</u>: \rightarrow simple situation (only *B* decay constant f_{B_s} enters):


$$\Rightarrow \mid B_s^0 \rightarrow \mu^+ \mu^-$$
 is one of the cleanest rare B decays

- <u>SM prediction</u>: $BR(B_s \to \mu^+ \mu^-) = (3.6 \pm 0.4) \times 10^{-9}$ [A.J. Buras ('09)]
- Most recent experimental upper bounds (95% C.L.):

 $\begin{aligned} \mathsf{BR}(B_s \to \mu^+ \mu^-) < 4.3 \times 10^{-8} \, (\mathsf{CDF}), \, 5.1 \times 10^{-8} \, (\mathsf{D}\emptyset), \, \underbrace{5.6 \times 10^{-8} \, (\mathsf{LHCb})}_{\mathsf{new}} \, \underbrace{\mathsf{[Moriond '11]}}_{\mathsf{SUP}} \end{aligned}$

NP may enhance BRs significantly...

• Example of a recent analysis: \rightarrow supersymmetric flavour models:

[Altmannshofer, Buras, Gori, Paradisi & Straub (2009); see also review by A. Buras, arXiv:1012.1447 [hep-ph]]

Prospects for $B_s ightarrow \mu^+ \mu^-$ @ LHCb

• At LHCb, the extraction of $BR(B_s^0 \to \mu^+\mu^-)$ will rely on normalization channels $(B_u^+ \to J/\psi K^+, B_d^0 \to K^+\pi^- \text{ and/or } B_d^0 \to J/\psi K^{*0})$:

$$\mathsf{BR}(B_s^0 \to \mu^+ \mu^-) = \mathsf{BR}(B_q \to X) \frac{\epsilon_X}{\epsilon_{\mu\mu}} \frac{N_{\mu\mu}}{N_X} \frac{f_q}{f_s}$$

- ϵ factors are total detector efficiencies.
- ${\cal N}$ factors denote the observed numbers of events.
- f_q are fragmentation functions, which describe the probability that a b quark will fragment in a B_q meson ($q \in \{u, d, s\}$).
- <u>A closer look shows:</u>

 f_q/f_s is the major source of uncertainty

- Limits the ability to detect a 5σ deviation from the SM at LHCb to $BR(B_s^0 \rightarrow \mu^+\mu^-) > 11 \times 10^{-9}$ (assuming $\Delta f_d/f_s = 13\%$).
- How can we meet the high precision at LHCb?

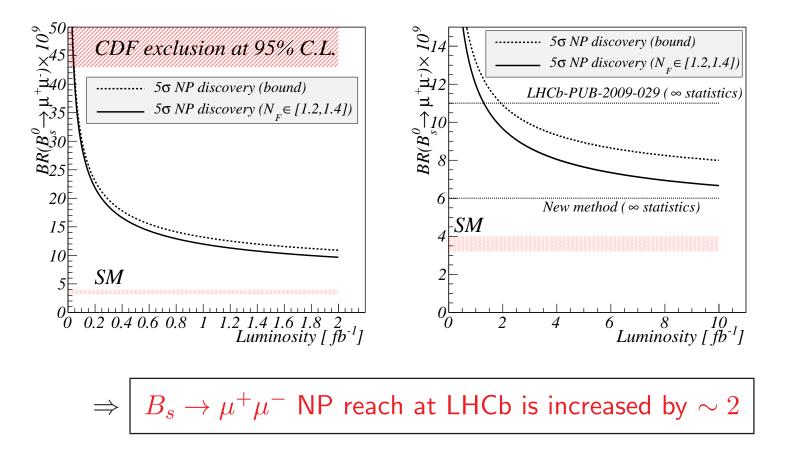
[LHCb Collaboration, B. Adeva et al., LHCb-PUB-2009-029, arXiv:0912.4179v2]

\rightarrow New Strategy: $|f_d/f_s$ @ LHCb |

[R.F., N. Serra & N. Tuning, Phys. Rev. D82 (2010) 034038 [arXiv:1004.3982 [hep-ph]]]

 \star First LHCb analysis \rightarrow Niels Tuning @ Beauty 2011

In a nutshell...

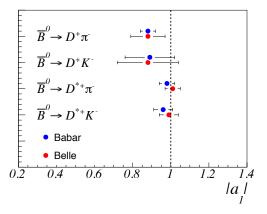

• Starting point:
$$\frac{N_s}{N_d} = \frac{f_s}{f_d} \times \frac{\epsilon(B_s \to X_1)}{\epsilon(B_d \to X_2)} \times \frac{\mathsf{BR}(B_s \to X_1)}{\mathsf{BR}(B_d \to X_2)}$$

- Knowing the ratio of the branching ratios, we could extract f_d/f_s .
- In order to implement this feature in practice, the $B_s \rightarrow X_1$ and $B_d \rightarrow X_2$ decays have to satisfy the following requirements:
 - the ratio of their branching ratios must be "easy" to measure at LHCb;
 - the decays must be robust with respect to the impact of NP;
 - the ratio of their BRs must be theoretically well understood:

- * Factorization is expected to work very well in these decays;
- * Theoretical precision limited by non-fact., U-spin-breaking effects.

Resulting NP Reach for $B_s \rightarrow \mu^+ \mu^-$ at LHCb

• Contours corresponding to the detection of a 5σ NP signal:



- Non-fact. U-spin-breaking effects: \Rightarrow few percent uncertainty [\rightarrow data].
- Factorizable U-spin-breaking effects: $\Rightarrow F_0^{(s)}(m_\pi^2)/F_0^{(d)}(m_K^2)$, required with $\sim 20\%$ precision to match LHCb [\rightarrow lattice QCD: in progress ...].
- Lower bound on $BR(B_s \rightarrow \mu^+ \mu^-)$: independent of the form-factor ratio.

Tests & Variant: $B \rightarrow D_s^{(*)}P$ ($P \in \{\pi, K\}$)

- Tests of factorization and SU(3) relations:
 - Cannot resolve non-factorizable effects within the experimental resolution:

 \Rightarrow as small as 5% (most fortunate cases).

- No indication for non-factorizable SU(3)-breaking corrections, with an experimental resolution as small as ~ 5%, even for decays with large colour-suppressed tree contributions (\rightarrow non-factorizable).
- Moreover: exchange topologies are as small as naively expected \Rightarrow
- Replace $\bar{B}^0_d \to D^+ K^-$ (Cabibbo-suppressed) by the $\bar{B}^0_d \to D^+ \pi^-$ channel:

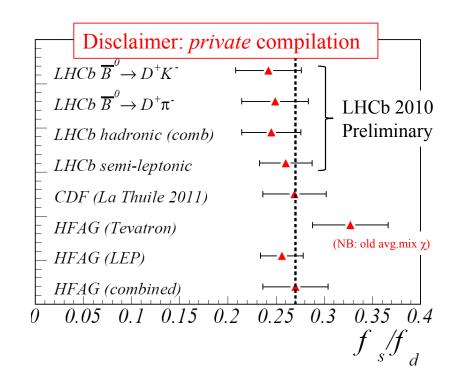
– (2006) CDF data for the $\bar{B}^0_s \rightarrow D^+_s \pi^-$, $\bar{B}^0_d \rightarrow D^+ \pi^-$ system:³

 $\Rightarrow (f_s/f_d)_{\rm NL} = 0.285 \pm 0.036 \text{ [vs. } (f_s/f_d)_{\rm SL} = 0.284 \pm 0.038 \text{]}$

[R.F., N. Serra & N. Tuning, Phys. Rev. D83 (2011) 014017 arXiv:1012.2784 [hep-ph]]

³Assumes that the corresponding SU(3)-breaking form-factor ratio equals $1 \rightarrow$ lattice QCD (see above).

First (Preliminary) LHCb Results on f_s/f_d


• Analysis of non-leptonic decays: $\bar{B}^0_s \rightarrow D^+_s \pi^- \oplus$

$$\begin{split} \bar{B}_d^0 &\to D^+ K^-: \quad f_s/f_d = 0.242 \pm 0.024|_{\text{stat}} \pm 0.018|_{\text{sys}} \pm 0.016|_{\text{theo}} \\ \bar{B}_d^0 &\to D^+ \pi^-: \quad f_s/f_d = 0.249 \pm 0.013|_{\text{stat}} \pm 0.020|_{\text{sys}} \pm 0.025|_{\text{theo}} \\ \text{Average}: \qquad f_s/f_d = 0.245 \pm 0.017|_{\text{stat}} \pm 0.018|_{\text{sys}} \pm 0.018|_{\text{theo}} \end{split}$$

• In excellent agreement with a semileptonic $B_{(s)}$ decay analysis:

$$\bar{B}^0_{(s)} \to DX\mu^-\bar{\nu}: \quad f_s/f_d = 0.260 \pm 0.008|_{\text{stat}} \pm 0.026|_{\text{sys}}$$

• Compilation of results:

[Niels Tuning @ Beauty 2011]

Concluding Remarks

Moving towards New Frontiers ...

• Exciting times for *B* physics in Spring 2011:

– Lots of activity at the Tevatron \oplus first physics results from LHCb.

- B (flavour) physics takes part in the big adventure of this decade: LHC
 - Specific NP scenarios still leave room for sizeable effects.
 - Promising channels to find *first* NP signals @ LHCb [and the LHC(?)]:

*
$$B_s^0 \to J/\psi \phi$$
, nicely complemented by $B_s^0 \to K^+ K^-$;

*
$$B_s^0 \to \mu^+ \mu^- \ [\oplus \ B_d^0 \to K^{*0} \mu^+ \mu^-, \ B_s^0 \to \phi \mu^+ \mu^-].$$

- Theoretical topics: [\leftrightarrow strong interaction with the LHCb community]
 - Further critically review SM phenomena, develop strategies to control hadronic uncertainties (preferably through guidance by data).
 - Further progress with lattice QCD/non-pert. methods is very desirable.
 - Explore the patterns in specific NP scenarios:

 \Rightarrow correlations \Rightarrow what kind of NP?

– Exploit/look for synergies with the high- Q^2 physics @ ATLAS & CMS.