CP violation in (new physics) three body decays A calculable strong phase

Monika Blanke

The Role of Heavy Fermions in Fundamental Physics **Portoroz** April 14, 2011

In a nutshell

- ① CP violation in heavy particle decays requires two interfering amplitudes with different weak and strong phases
- a calculable strong phase can be obtained from the propagation of intermediate virtual particles

NEW! possible with the same intermediate state having different virtualities

③ effect present in MSSM neutralino decay – but detection very challenging

J. Berger, MB, Y. Grossman, 1104.soon

CP violation - a quick overview

What's so interesting about CP violation?

http://www.phy.bris.ac.uk/groups/particle/PUS/A-level/Pictures/CartoonCP.gif

Cogito ergo sum

baryon asymmetry of the universe

$$\eta = \frac{\eta_B - \eta_{\bar{B}}}{\eta_{\gamma}} \sim 6 \cdot 10^{-10}$$

Sakharov conditions for baryogenesis:

- Baryon number violation
- ② C and CP violation
- Interactions out of thermal equilibrium

all three conditions fulfilled in the SM however CP violating effects are too small!

NP must introduce additional CP violation

Ways to access new sources of CP violation

Indirectly: NP contributions to low energy observables

- flavor and CP violating meson decays
- CP violation in the lepton sector
- electric dipole moments

• . . .

high precision required, NP effects often hidden by dominant SM contribution, QCD effects

2 directly: CP violation at colliders

- NP particle production cross-section
- NP particle decays

> high energies required, but SM background can often be reduced to a large extent

Requirements for observing CP violation

CP symmetry relates particles and anti-particles > CP violation can manifest itself through

$$\Gamma(A \to f) \neq \Gamma(\bar{A} \to \bar{f})$$

necessary conditions:

- (1) two contributions of comparable size to decay amplitude \mathcal{A}_f
- ② different "weak" CP violating phases
- ③ different "strong" CP conserving phases

More explicitly...

$$\mathcal{A}_{f} = |a_{1}|e^{i(\delta_{1}+\phi_{1})} + |a_{2}|e^{i(\delta_{2}+\phi_{2})} \bar{\mathcal{A}}_{\bar{f}} = |a_{1}|e^{i(\delta_{1}-\phi_{1})} + |a_{2}|e^{i(\delta_{2}-\phi_{2})}$$

- CP violating phases φ_i result from complex parameters in the Lagrangian ➤ appear with opposite sign in A_f and Ā_f
- CP conserving phases δ_i stem from contributions of (strong) final state interactions or intermediate on-shell particles (propagator) ≻ no sign change under CP conjugation

$$a_{\mathsf{CP}} = \frac{\Gamma(A \to f) - \Gamma(\bar{A} \to \bar{f})}{\Gamma(A \to f) + \Gamma(\bar{A} \to \bar{f})}$$

$$\sim -\frac{2|a_1||a_2|}{|a_1|^2 + |a_2|^2} \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2)$$

Strong phase from intermediate state propagation

general structure:
$$\mathcal{A} = \mathcal{V}_1 \frac{1}{q^2 - m^2 + im\Gamma} \mathcal{V}_2$$

• $V_{1,2}$ contain Lagrangian parameters > weak phase

 $\phi = \arg\left(\mathcal{V}_1\mathcal{V}_2\right)$

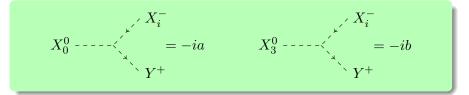
● Breit-Wigner denominator is CP even ➤ calculable strong phase

$$\delta = \arg\left(\frac{1}{q^2 - m^2 + im\Gamma}\right)$$

- o different mass and/or width: distinct particles
 ➤ e. g. meson oscillations, several resonances
- different amount of virtuality: possible for identical particles

Minimalistic CP violating toy model

- theory of scalar particles $X_{1,2}^{\pm}$, $X_{0,3}^{0}$, Y^{\pm}
- neutral particles $X_{0,3}^0$ are CP eigenstates
- complex couplings a, b, universal for X_1^{\pm} and X_2^{\pm}



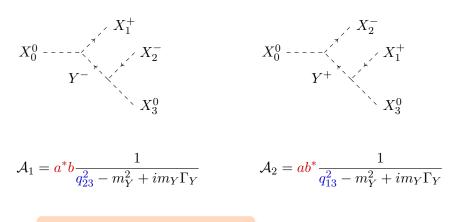
• one physical CP violating phase: $\varphi = \arg(ab^*)$

\succ any CP violating process must involve both couplings a and b

CP violation in three body decays - simple toy model

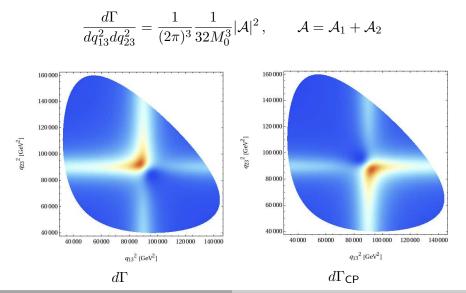
The decay $X_0^0 \rightarrow X_1^{\pm} X_2^{\mp} X_3^0$

two interfering diagrams:



different weak and strong phases!

Differential decay width and Dalitz plot



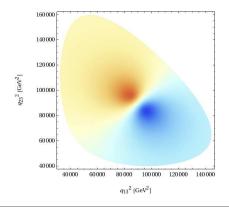
M. Blanke CP violation in (new physics) three body decays

CP violation in three body decays - simple toy model

Differential CP asymmetry

$$\begin{aligned} a_{\mathsf{CP}}^{\mathsf{diff}} &= \frac{d\Gamma - d\Gamma_{\mathsf{CP}}}{d\Gamma + d\Gamma_{\mathsf{CP}}} \\ &= \frac{2\sin 2\varphi \left(\Delta q_{13}^2 - \Delta q_{23}^2\right)\Gamma_Y m_Y}{2(1 + \cos 2\varphi)m_Y^2\Gamma_Y^2 + (\Delta q_{13}^2)^2 + (\Delta q_{23}^2)^2 + 2\cos 2\varphi \Delta q_{13}^2 \Delta q_{23}^2} \end{aligned}$$

0



$$\Delta q_{i3}^2 = q_{i3}^2 - m_Y^2 : \text{ virtuality of } Y$$
$$a_{\mathsf{CP}}^{\mathsf{diff}} = 0 \text{ for}$$
$$\bullet \varphi = 0$$

n

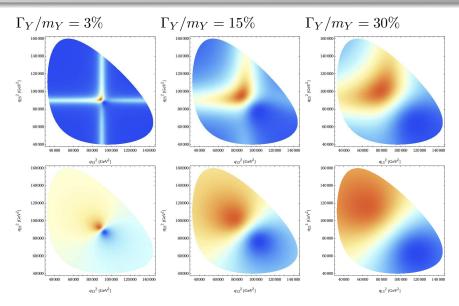
•
$$m_Y = 0 \lor \Gamma_Y = 0$$

 $\lor \Delta q_{13}^2 = \Delta q_{23}^2$

2

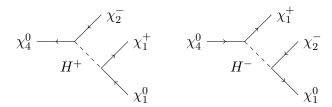
$$|a_{\sf CP}^{\sf diff}|$$
 maximal for
 $\Delta q_{13}^2 = -\Delta q_{23}^2 = \pm \Gamma_Y m_Y \cot \varphi$

Dependence on Γ_Y



CP violation in the MSSM electroweak sector

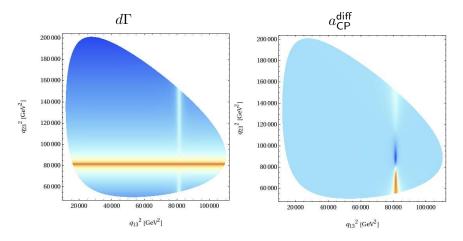
- ${\scriptstyle \bullet }$ gaugino masses $M_{1,2},~\mu$ and the b parameter in gerenal complex
- physical phases $\arg(\mu^* b M_2^*)$ and $\arg(M_1 M_2^*)$
- strong indirect constraints from electric dipole moments and flavor physics – but we would like to test these phases directly!
- \succ consider $\chi_4^0 \rightarrow \chi_1^\pm \chi_2^\mp \chi_1^0$



(neglect contributions of neutral Higgses, W^{\pm} , Z for the moment)

Application to the MSSM

$\chi_4^0 \to \chi_1^\pm \chi_2^\mp \chi_1^0$ – decay width and CP asymmetry



 \succ visible asymmetry (up to 15%), but only in very restricted region of phase space

The issue with R-parity

- *R*-parity conservation ➤ each decay products deays to SM particles and missing energy
- differential analysis (Dalitz plots...) not feasible only integrated asymmetry can be accessed
- integrated asymmetry a_{CP}^{int} suffers from various suppression factors weak phase $\propto \frac{|\mu M_2|}{M_1^2} \lesssim \mathcal{O}(10^{-1})$ finite H^{\pm} width $\propto \frac{\Gamma_H \pm}{m_H \pm} \sim \mathcal{O}(10^{-2})$ phase space asymmetry $\propto \frac{\Delta m_{\chi^{\pm}}^2}{M_1^2} \lesssim \mathcal{O}(10^{-1})$
- for our benchmark point $a_{CP}^{int} = -3.5 \cdot 10^{-5}$

> bad news for the LHC...bad choice of example!

ς		m	m	2	ry
9	u			a	ı y

Conclusions

- heavy NP particle decays are sensitive to CP violation if mediated by two interfering amplitudes with different weak and strong phases
- ② calculable strong phases can be obtained from different virtualities of *identical* intermediate particles
- ③ very small effect in the MSSM but potentially significant in other new physics scenarios

new CP odd observables for the LHC!

Toy model parameters

 $\begin{array}{rcl} a & = & 20 \ {\rm GeV} \\ b & = & 30 \ {\rm GeV} \cdot e^{i\pi/4} \\ m_0 & = & 500 \ {\rm GeV} \\ m_1 & = & 100 \ {\rm GeV} \\ m_2 & = & 120 \ {\rm GeV} \\ m_3 & = & 80 \ {\rm GeV} \\ m_Y & = & 300 \ {\rm GeV} \\ \Gamma_Y & = & 9, 21, 45, 90 \ {\rm GeV} \end{array}$

MSSM parameters

$$M_{1} = 500 \text{ GeV}$$

$$M_{2} = 80 \text{ GeV}$$

$$m_{Hu}^{2} = -(120 \text{ GeV})^{2}$$

$$m_{Hd}^{2} = (250 \text{ GeV})^{2}$$

$$\tan \beta = 5$$

$$\phi_{\mu} = \pi/2$$

1