Isgur-Wise functions and the Lorentz group

Luis Oliver
Laboratoire de Physique Théorique, Orsay

The Role of Heavy Fermions in Fundamental Physics

Portoroz (Slovenia)
11-14 April 2011

On work by A. Le Yaouanc, L. Oliver and J.-C. Raynal

Motivations

At LHC, many more urgent subjects than $b \rightarrow c \ell \nu$ transitions :

- Search of the Higgs boson
- Search of New Physics (Supersymmetry ?)
- Precise study of $C P$ violation in B mesons, as in $B_{s}-\bar{B}_{s}$
- Look for photon polarization in rare decays $b \rightarrow s \gamma$

However, there are some motivations :

- It is never too late to get new rigorous results on this subject
- $B R\left(\Lambda_{b} \rightarrow \Lambda_{c} \ell \nu\right) \simeq 5 \%$ (Tevatron), $\frac{d \Gamma}{d w}$ can be studied at LHC-b
- Exclusive (HQET) $\bar{B} \rightarrow D\left(D^{*}\right) \ell \nu \Rightarrow\left|V_{c b}\right|=(38.7 \pm 1.1) \times 10^{-3}$ Inclusive (OPE) $\quad \bar{B} \rightarrow X_{c} \ell \nu \Rightarrow\left|V_{c b}\right|=(41.5 \pm 0.7) \times 10^{-3}$
Consistent within errors, but the situation is not satisfactory

Isgur-Wise functions and the Lorentz group

Matrix element of a current between heavy hadrons factorizes (A. Falk) into a trivial heavy quark current matrix element and a light cloud overlap (that contains the long distance physics)
$<H^{\prime}\left(v^{\prime}\right)\left|J^{Q^{\prime} Q}(q)\right| H(v)>=$
$<Q^{\prime}\left(v^{\prime}\right), \pm \frac{1}{2}\left|J^{Q^{\prime} Q}(q)\right| Q(v), \pm \frac{1}{2}><v^{\prime}, j^{\prime}, M^{\prime} \mid v, j, M>$
The light cloud follows the heavy quark with the same four-velocity
Isgur-Wise functions: light cloud overlaps $\xi\left(v \cdot v^{\prime}\right)=\left\langle v^{\prime} \mid v\right\rangle$
Factorization valid only in absence of hard radiative corrections

Light cloud Hilbert space

Can demonstrate that the light cloud states form a Hilbert space on which acts a unitary representation of the Lorentz group
$\Lambda \rightarrow U(\Lambda)$
$U(\Lambda)|v, j, \epsilon>=| \Lambda v, j, \Lambda \epsilon>$
$\left|v, j, \epsilon>=\sum_{M}\left(\Lambda^{-1} \epsilon\right)_{M} U(\Lambda)\right| v_{0}, j, M>$
$\Lambda v_{0}=v \quad v_{0}=(1,0,0,0) \quad \Lambda^{-1} \epsilon:$ polarization vector at rest
This fundamental formula defines, in the Hilbert space \mathcal{H} of a unitary representation of $S L(2, C)$ the states $\mid v, j, \epsilon>$ whose scalar products define the IW functions in terms of $\mid v_{0}, j, M>$ which occur as $S U(2)$ multiplets in the restriction to $S U(2)$ of the $S L(2, C)$ representation

Choose the simpler case of baryons with $\mathbf{j}=\mathbf{0}$
Baryons $\Lambda_{b}(v), \Lambda_{c}(v)\left(S_{q q}=0, L=0\right.$ in quark model language $)$
Then, the Isgur-Wise function writes
$\xi\left(v \cdot v^{\prime}\right)=<U\left(B_{v^{\prime}}\right) \phi_{0} \mid U\left(B_{v}\right) \phi_{0}>$
$\mid \phi_{0}>$ represents the light cloud at rest and $B_{v}, B_{v^{\prime}}$ are boosts
$\xi(w)=<\phi_{0} \mid U(\Lambda) \phi_{0}>\quad \Lambda v_{0}=v \quad v^{0}=w$
Λ is for instance the boost along $O z$
$\Lambda_{\tau}=\left(\begin{array}{cc}e^{\tau / 2} & 0 \\ 0 & e^{-\tau / 2}\end{array}\right)$

$$
w=\operatorname{ch}(\tau)
$$

Method completely general, for any j and any transition $j \rightarrow j^{\prime}$

Decomposition into irreducible representations

The unitary representation $U(\Lambda)$ is in general reducible
Useful to decompose it into irreducible representations $U_{\chi}(\Lambda)$
Hilbert space \mathcal{H} made of functions $\quad \psi: \chi \in X \rightarrow \psi_{\chi} \in \mathcal{H}_{\chi}$
Scalar product in \mathcal{H}
$<\psi^{\prime}\left|\psi>=\int_{X}<\psi_{\chi}^{\prime}\right| \psi_{\chi}>d \mu(\chi)$
$\chi \in X$: irreducible unitary representation
$d \mu(\chi)$: a positive measure
$(U(\Lambda) \psi)_{\chi}=U_{\chi}(\Lambda) \psi_{\chi} \quad \psi_{\chi} \in \mathcal{H}_{\chi}$
\mathcal{H}_{χ} : Hilbert space of χ on which acts $U_{\chi}(\Lambda)$

Integral formula for the Isgur-Wise function

Notation

$$
\xi_{\chi}(w)=<\phi_{0, \chi} \mid U_{\chi}(\Lambda) \phi_{0, \chi}>
$$

irreducible Isgur-Wise function corresponding to irreducible χ
General form of the IW function: $\quad \xi(w)=\int_{X_{0}} \xi_{\chi}(w) d \nu(\chi)$
Isgur-Wise function as a mean value of irreducible IW functions with respect to some positive normalized measure ν
$\int_{X_{0}} d \nu(\chi)=1$
$X_{0} \subset X$ irreducible representations of $S L(2, C)$ containing a non-zero $S U(2)$ scalar subspace ($j=0$ case)

Irreducible IW function $\xi_{\chi}(w)$ when ν is a δ function

Irreducible unitary representations of the Lorentz group

 Naïmark (1962)Principal series $\quad \chi=(p, n, \rho)$
$n \in Z$ and $\rho \in R$

$$
(n=0, \rho \geq 0 ; n>0, \rho \in R)
$$

Hilbert space $\mathcal{H}_{p, n, \rho}$
$<\phi^{\prime} \mid \phi>=\int \overline{\phi^{\prime}(z)} \phi(z) d^{2} z \quad d^{2} z=d(\operatorname{Rez}) d(\operatorname{Imz})$
Unitary operator $U_{p, n, \rho}(\Lambda)$
$\left(U_{p, n, \rho}(\Lambda) \phi\right)(z)=\left(\frac{\alpha-\gamma z}{|\alpha-\gamma z|}\right)^{n}|\alpha-\gamma z|^{2 i \rho-2} \phi\left(\frac{\delta z-\beta}{\alpha-\gamma z}\right)$
$\Lambda=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \quad \alpha \delta-\beta \gamma=1 \quad(\alpha, \beta, \gamma, \delta) \in C$
$\underline{\text { Supplementary series }} \quad \chi=(s, \rho)$
$\rho \in R \quad(0<\rho<1)$
Hilbert space $\mathcal{H}_{s, \rho}$
$<\phi^{\prime}\left|\phi>=\int \overline{\phi^{\prime}\left(z_{1}\right)}\right| z_{1}-\left.z_{2}\right|^{2 \rho-2} \phi\left(z_{2}\right) d^{2} z_{1} d^{2} z_{2}$
(non-standard scalar product)
Unitary operator $U_{s, \rho}(\Lambda)$
$\left(U_{s, \rho}(\Lambda) \phi\right)(z)=|\alpha-\gamma z|^{-2 \rho-2} \phi\left(\frac{\delta z-\beta}{\alpha-\gamma z}\right)$
Trivial representation

$$
\chi=t
$$

Hilbert space $\mathcal{H}_{t}=C$
$<\phi^{\prime} \mid \phi>=\overline{\phi^{\prime}(z)} \phi(z)$
Unitary operator

$$
U_{t}(\Lambda)=1
$$

Decomposition under the rotation group

Need restriction to $S U(2)$ of unitary representations χ of $S L(2, C)$
For a χ there is an orthonormal basis $\phi_{j, M}^{\chi}$ of \mathcal{H}_{χ} adapted to $S U(2)$
Particularizing to $j=0$: all types of representations contribute
$\phi_{0,0}^{p, 0, \rho}(z)=\frac{1}{\sqrt{\pi}}\left(1+|z|^{2}\right)^{i \rho-1}$

$$
\phi_{0,0}^{s, \rho}(z)=\frac{\sqrt{\rho}}{\pi}\left(1+|z|^{2}\right)^{-\rho-1}
$$

$$
\phi_{0,0}^{t}(z)=1
$$

$$
\begin{aligned}
& (\chi=(p, 0, \rho), \rho \geq 0) \\
& (\chi=(s, \rho), 0<\rho<1) \\
& (\chi=t)
\end{aligned}
$$

For $j \neq 0$ enters also the matrix element
$D_{M^{\prime}, M}^{j}(R)=<j, M^{\prime}\left|U_{j}(R)\right| j, M>\quad R \in S U(2)$

Irreducible IW functions in the case $\mathbf{j}=\mathbf{0}$

Need $\quad \xi_{\chi}(w)=<\phi_{0,0}^{\chi} \mid U_{\chi}\left(\Lambda_{\tau}\right) \phi_{0,0}^{\chi}>\quad\left(\Lambda_{\tau}\right.$: boost, $\left.w=c h(\tau)\right)$
Transformed elements $U_{\chi}\left(\Lambda_{\tau}\right) \phi_{0,0}^{\chi}$
$\left(U_{p, 0, \rho}\left(\Lambda_{\tau}\right) \phi_{0,0}^{p, 0, \rho}\right)(z)=\frac{1}{\sqrt{\pi}}\left(e^{\tau}+e^{-\tau}|z|^{2}\right)^{i \rho-1}$
$\left(U_{s, \rho}\left(\Lambda_{\tau}\right) \phi_{0,0}^{s, \rho}\right)(z)=\frac{\sqrt{\rho}}{\sqrt{\pi}}\left(e^{\tau}+e^{-\tau}|z|^{2}\right)^{-\rho-1}$
$U_{t}\left(\Lambda_{\tau}\right) \phi_{0,0}^{t}=1$
Using the scalar products for each class of representations
$\xi_{p, 0, \rho}(w)=\frac{\sin (\rho \tau)}{\rho \operatorname{sh}(\tau)}$
$\xi_{s, \rho}(w)=\frac{\operatorname{sh}(\rho \tau)}{\rho \operatorname{sh}(\tau)} \quad(0<\rho<1)$
$\xi_{t}(w)=1$

Integral formula for the IW function in the case $j=0$

$\xi(w)=\int_{\left[0, \infty\left[\frac{\sin (\rho \tau)}{\rho s h(\tau)}\right.\right.} d \nu_{p}(\rho)+\int_{] 0,1[} \frac{\operatorname{sh}(\rho \tau)}{\rho \operatorname{sh}(\tau)} d \nu_{s}(\rho)+\nu_{t}$
ν_{p} and ν_{s} are positive measures and ν_{t} a real number ≥ 0
$\int_{[0, \infty[} d \nu_{p}(\rho)+\int_{] 0,1[} d \nu_{s}(\rho)+\nu_{t}=1$
One-parameter family

$$
\xi_{x}(w)=\frac{\operatorname{sh}(\tau \sqrt{1-x})}{\operatorname{sh}(\tau) \sqrt{1-x}}=\frac{\sin (\tau \sqrt{x-1})}{\operatorname{sh}(\tau) \sqrt{x-1}}
$$

covers all irreducible representations \rightarrow simplifies integral formula
$\xi(w)=\int_{[0, \infty[} \xi_{x}(w) d \nu(x) \quad\left(\nu\right.$ positive measure $\left.\int_{[0, \infty[} d \nu(x)=1\right)$
$\xi_{p, 0, \rho}(w)=\xi_{x}(w) \quad x=1+\rho^{2}, \rho \in[0, \infty[\quad \Leftrightarrow \quad x \in[1, \infty[$
$\left.\xi_{s, \rho}(w)=\xi_{x}(w) \quad x=1-\rho^{2}, \rho \in\right] 0,1[\quad \Leftrightarrow \quad x \in] 0,1[$
$\xi_{t}(w)=\xi_{x}(w) \quad x=0 \quad x \in\{0\}$
\rightarrow a transparent deduction of constraints on the derivatives $\xi^{(n)}(1)$

Constraints on the derivatives of the Isgur-Wise function
Derivative $\xi^{(k)}(1)$: expectation value of a polynomial of degree k $\xi^{(k)}(1)=(-1)^{k} 2^{k} \frac{k!}{(2 k+1)!}<\prod_{i=1}^{k}\left(x+i^{2}-1\right)>$
In terms of moments

$$
\mu_{n}=<x^{n}>
$$

$\xi(1)=\mu_{0}=1$
$\xi^{\prime}(1)=-\frac{1}{3} \mu_{1}$
$\xi^{\prime \prime}(1)=\frac{1}{15}\left(3 \mu_{1}+\mu_{2}\right)$

Moments μ_{k} in terms of derivatives $\xi(1), \xi^{\prime}(1), \ldots \xi^{(k)}(1)$
$\mu_{0}=\xi(1)=1$
$\mu_{1}=-3 \xi^{\prime}(1)$
$\mu_{2}=3\left[3 \xi^{\prime}(1)+5 \xi^{\prime \prime}(1)\right]$

Constraints on moments of a variable with positive values
$\operatorname{det}\left[\left(\mu_{i+j}\right)_{0 \leq i, j \leq n}\right] \geq 0$
$\operatorname{det}\left[\left(\mu_{i+j+1}\right)_{0 \leq i, j \leq n}\right] \geq 0$
Lower moments
$\mu_{1} \geq 0$
$\mu_{2} \geq \mu_{1}^{2}$

That imply for the derivatives of the Isgur-Wise function
$\rho_{\Lambda}^{2} \geq 0$
$\xi^{\prime \prime}(1) \geq \frac{3}{5} \rho_{\Lambda}^{2}\left(1+\rho_{\Lambda}^{2}\right)$

Same results as with the Sum Rule approach

Consistency test for any Ansatz of the Isgur-Wise function

- We have the integral representation

$$
\xi(w)=\int_{[0, \infty[} \frac{\sin (\rho \tau)}{\rho \operatorname{sh}(\tau)} d \nu_{p}(\rho)+\int_{] 0,1[} \frac{\operatorname{sh}(\rho \tau)}{\rho \operatorname{sh}(\tau)} d \nu_{s}(\rho)+\nu_{t}
$$

- ν_{p} and ν_{s} are positive measures and ν_{t} real ≥ 0 satisfying

$$
\int_{[0, \infty[} d \nu_{p}(\rho)+\int_{] 0,1[} d \nu_{s}(\rho)+\nu_{t}=1
$$

- One can invert the integral formula by Fourier transforming
- One can check if a given Ansatz for the Isgur-Wise function $\xi(w)$ satisfies the integral representation with positive measures

Phenomenological examples

Example 1 exponential (principal series contributes)
$\xi(w)=\exp [-c(w-1)]=\frac{2}{\pi} \frac{e^{c}}{c} \int_{0}^{\infty} \rho^{2} K_{i \rho}(c) \frac{\sin (\rho \tau)}{\rho \operatorname{sh}(\tau)} d \rho[w=\operatorname{ch}(\tau)]$
Inconsistent : $K_{i \rho}(c)$ can be negative $\rightarrow d \nu_{p}(\rho)$ is not positive
Example 2 (principal and supplementary series contribute)
$\xi(w)=\left(\frac{2}{1+w}\right)^{2 c}=\frac{4^{2 c}}{\pi} \int_{0}^{\infty} \rho^{2} \frac{|\Gamma(2 c+i \rho-1)|^{2}}{\Gamma(4 c-1)} \frac{\sin (\rho \tau)}{\rho \operatorname{sh}(\tau)} d \rho$
$+\theta(1-2 c)(1-2 c) 2^{4 c} \frac{\operatorname{sh}((1-2 c) \tau)}{(1-2 c) \operatorname{sh}(\tau)} \quad$ valid for slope $c \geqslant \frac{1}{4}$
Example 3 (principal series contributes)
$\xi(w)=\frac{1}{\left[1+\frac{c}{2}(w-1)\right]^{2}}=\frac{8}{c^{2}} \int_{0}^{\infty} \frac{\rho^{2}}{\operatorname{sh}(\pi \rho)} \frac{\operatorname{sh}(\gamma \rho)}{\operatorname{sh}(\gamma)} \frac{\sin (\rho \tau)}{\rho \operatorname{sh}(\tau)} d \rho$
$\left(\cos \gamma=\frac{2}{c}-1\right) \quad$ valid for slope $c \geqslant 1$

Other theoretical results

The Isgur-Wise function is a function of positive type

From Bjorken-like Sum Rules one can demonstrate
$\int \frac{d^{3} \vec{v}}{v^{0}} \frac{d^{3} \vec{v}^{\prime}}{v^{\prime 0}} \psi\left(v^{\prime}\right)^{*} \xi\left(v . v^{\prime}\right) \psi(v) \geq 0 \quad$ for any $\psi(v)$
\Rightarrow strong constraints on the possible forms of the IW function
The Sum Rule and Lorentz group approaches are equivalent

- The Lorentz group approach implies that $\xi(w)$ is of positive type
- The Sum Rule approach implies the Lorentz group approach

Examples of one-parameter functions satisfying the theoretical constraints

Isgur-Wise function for baryons $j^{P}=0^{+} \quad \Lambda_{b} \rightarrow \Lambda_{c} \ell \nu$

$$
\xi_{\Lambda}(w)=\left(\frac{2}{w+1}\right)^{2 \rho_{\Lambda}^{2}} \quad \text { with } \quad \rho_{\Lambda}^{2} \geq \frac{1}{4}
$$

Rigorous lower bound (Isgur et al. SR) : $\quad \rho_{\Lambda}^{2} \geq 0$

Isgur-Wise function for mesons $j^{P}=\frac{1}{2}^{-} \quad \bar{B} \rightarrow D\left(D^{*}\right) \ell \nu$
One can apply the method to mesons (spin complications)

$$
\xi(w)=\left(\frac{2}{w+1}\right)^{2 \rho^{2}} \quad \text { with } \quad \rho^{2} \geq \frac{3}{4}
$$

Rigorous lower bound (Bjorken + Uraltsev SR) : $\quad \rho^{2} \geq \frac{3}{4}$

New rigorous results for non-perturbative physics in HQET

- Decomposing into irreducible representations a unitary representation of the Lorentz group \rightarrow integral formula for the Isgur-Wise function with positive measures
- Explicitly given for $j=0\left(\Lambda_{b} \rightarrow \Lambda_{c} \ell \nu\right)$
- Derivatives of the IW function given in terms of moments of a positive variable \rightarrow inequalities between the derivatives
- Sum Rules \rightarrow IW function is a function of positive type
- Application : exponential form of the IW function is inconsistent
- Equivalence between Sum Rule and Lorentz group approaches
- Consistency test for any Ansatz of the IW function
- Application to phenomenological examples
- Can be generalized for any $j\left(j=\frac{1}{2}\right.$ for mesons $\left.\bar{B}_{d} \rightarrow D^{(*)} \ell \nu\right)$

The Isgur-Wise function is a function of positive type

For any N and any complex numbers a_{i} and velocities v_{i}
$\sum_{i, j=1}^{N} a_{i}^{*} a_{j} \xi\left(v_{i} \cdot v_{j}\right) \geq 0 \quad$ or, in a covariant form
$\int \frac{d^{3} \vec{v}}{v^{0}} \frac{d^{3} \vec{v}^{\prime}}{v^{\prime 0}} \psi\left(v^{\prime}\right)^{*} \xi\left(v . v^{\prime}\right) \psi(v) \geq 0 \quad$ for any $\psi(v)$
From the Sum Rule $\quad\left(w_{i}=v_{i} \cdot v^{\prime}, w_{j}=v_{j} \cdot v^{\prime}, w_{i j}=v_{i} \cdot v_{j}\right)$
$\xi\left(w_{i j}\right)=\sum_{n} \sum_{L} \tau_{L}^{(n)}\left(w_{i}\right)^{*} \tau_{L}^{(n)}\left(w_{j}\right)$
$\sum_{0 \leq k \leq L / 2} C_{L, k}\left(w_{i}^{2}-1\right)^{k}\left(w_{j}^{2}-1\right)^{k}\left(w_{i} w_{j}-w_{i j}\right)^{L-2 k}$
Legendre polynomial. Use rest frame $v^{\prime}=(1,0,0,0)$
$\sum_{i, j=1}^{N} a_{i}^{*} a_{j} \xi\left(v_{i} . v_{j}\right)=4 \pi \sum_{i, j=1}^{N} \sum_{n} \sum_{L} \frac{2^{L}(L!)^{2}}{(2 L+1)!} \sum_{m=-L}^{m=+L}$
$\left[a_{i} \tau_{L}^{(n)}\left(\sqrt{1+\vec{v}_{i}^{2}}\right) \mathcal{Y}_{L}^{m}\left(\vec{v}_{i}\right)\right]^{*}\left[a_{j} \tau_{L}^{(n)}\left(\sqrt{1+\vec{v}_{j}^{2}}\right) \mathcal{Y}_{L}^{m}\left(\vec{v}_{j}\right)\right] \geq 0$

One example : application to the exponential form

$\xi(w)=\exp [-c(w-1)]$
$I=\int \frac{d^{3} \vec{v} d^{3} \vec{v}^{\prime}}{v^{0}} \frac{v^{\prime 0}}{} \phi\left(\left|\vec{v}^{\prime}\right|\right)^{*} \exp \left[-c\left(\left(v \cdot v^{\prime}\right)-1\right)\right] \phi(|\vec{v}|)$
$=16 \pi^{3} \frac{e^{c}}{c} \int_{-\infty}^{\infty} K_{i \rho}(c)|\tilde{f}(\rho)|^{2} d \rho$
$f(\eta)=\operatorname{sh}(\eta) \phi(\operatorname{sh}(\eta))$
$K_{\nu}(z)=\frac{1}{2} \int_{-\infty}^{\infty} \exp [-z \operatorname{ch}(t)] e^{\nu t} d t \quad$ Macdonald function
Whatever the slope $c>0, K_{i \rho}(c)$ takes negative values
Asymptotic formula
$K_{i \rho}(c) \sim \sqrt{\frac{2 \pi}{\rho}} e^{-\rho \pi / 2} \cos \left[\rho\left(\log \left(\frac{2 \rho}{c}\right)-1\right)-\frac{\pi}{4}\right] \quad(\rho \gg c)$
Therefore there a function $\psi(v)$ for which the integral $I<0$
The exponential form is inconsistent with the Sum Rules

Sum Rule and Lorentz group approaches are equivalent

- The Lorentz group approach implies that $\xi(w)$ is of positive type $\xi(w)=<U\left(B_{v^{\prime}}\right) \psi_{0} \mid U\left(B_{v}\right) \psi_{0}>\quad\left(B_{v}:\right.$ boost $\left.v_{0} \rightarrow v\right)$
$\sum_{i, j=1}^{N} a_{i}^{*} a_{j} \xi\left(v_{i} \cdot v_{j}\right)=\left\|\sum_{j=1}^{N} a_{j} U\left(B_{v_{j}}\right) \psi_{0}\right\|^{2} \geq 0$
- The Sum Rule approach implies the Lorentz group approach A function $f(\Lambda)$ on the group $S L(2, C)$ is of positive type when $\sum_{i, j=1}^{N} a_{i}^{*} a_{j} f\left(\Lambda_{i}^{-1} \Lambda_{j}\right) \geq 0$
$\left(N \geq 1\right.$, complex $\left.a_{i}, \Lambda_{i} \in S L(2, C)\right)$
Theorem (Dixmier) : for any function $f(\Lambda)$ of positive type exists a unitary representation $U(\Lambda)$ of $S L(2, C)$ in a Hilbert space \mathcal{H} and an element $\phi_{0} \in \mathcal{H} \rightarrow f(\Lambda)=<\phi_{0} \mid U(\Lambda) \phi_{0}>$
Definition of $f\left(\Lambda_{i}^{-1} \Lambda_{j}\right)=\xi\left(v_{i} \cdot v_{j}\right)=\xi\left(v_{0} \cdot \Lambda_{i}^{-1} \Lambda_{j} v_{0}\right)$

