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Introduction

Renewed interest in gauge-mediated supersymmetry breaking (GMSB) in 
the past few years:

➞ intense activity on the construction of complete models of 
supersymmetry breaking and its mediation to the observable (MSSM) 
sector, as well as on the phenomenology of general gauge mediation 
[Meade, Seiberg, Shih ’08]

Generic problem: explicit models often lead to suppressed gaugino masses

Metastability seems to be an important ingredient of viable models

➞ can radiative corrections promote the supersymmetry breaking vacuum 
to the ground state of the theory?

• flavour physics experiments: no or very small deviations from MFV (i.e. 
close to flavour-universal soft terms)
• theoretical progress on supersymmetry breaking [Intriligator, Seiberg, Shih 
(2006): dynamical supersymmetry breaking in a metastable vacuum]



Short review of gauge mediation

Supersymmetry breaking is parametrized by a spurion field X with

X couples to messenger fields in vector-like representations of the SM 
gauge group [often complete GUT representations, e.g.          of SU(5)]:

⇒ supersymmetric messenger mass M + supersymmetry breaking mass 
term                   for the scalar messengers:

                                                       ⇒  scalar masses 

⇒ soft terms in the observable sector via gauge loops

〈X〉 = M + Fθ2

Fφφ̃ + h.c.

(
φ∗ φ̃

) (
M2 −F ∗

−F M2

) (
φ
φ̃∗

)
M2 ± |F |

(5, 5̄)

required (no tachyon among scalar messengers)

Wmess = λXXΦΦ̃

|F | < M2



Gaugino masses arise at one loop:

R = messenger representation, Ta(R) = Dynkin index

Scalar masses arise at two loops:

       = second Casimir coefficient for the superfield χ
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Main advantage of GMSB:  since gauge interactions are flavour blind, the  
induced soft terms do not violate flavour

                       ⇒ solves the SUSY flavour problem

Black box:  dynamics that generates M and F
             ➞ hidden (supersymmetry breaking) sector

can be perturbative (O’raifeartaigh) or non-perturbative (e.g. SQCD)

Simplest example:  O’Raifeartaigh

scalar potential:

                  and               incompatible ⇒ supersymmetry broken

minimum for                   (assuming               )

   ⇒                            for any value of X

X not fixed at tree level ➞ flat direction

W = X
(
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)
+ mZY

V =
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∣∣2 + |2XY +mZ|2 + |mY |2

f + Y 2 = 0

Y = Z = 0 m2 > 2f

mY = 0

V = |FX |2 = f2 F ≡ FX = −f



Next step:  couple the supersymmetry breaking field X to messengers

As long as                             , the O’R vacuum (with                    ) 
remains a local minimum

For                             , an instability appears in the messenger direction

W = X
(
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+ mZY +Φ (λX +M) Φ̃
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∣∣2+ |2XY +mZ|2+ |mY |2 + |λX +M |2 (|Φ|2 + |Φ̃|2)+λΦΦ̃
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Φ = Φ̃ = 0|λX +M |2 > |λf |

|Φ| = |Φ̃|

|λX +M |2 < |λf |

X

V⇒ signals the presence of a deeper 
minimum with messenger VEVs:

unacceptable since breaks the SM 
gauge symmetry

λX +M = 0 , Y = Z = 0 ,

ΦΦ̃ = −f/λ
|λX +M |2 > |λf |



Ways out:  (i) 1-loop corrections may stabilize X at a value X0 such that
                               ⇒ supersymmetry broken in a metastable vacuum 
(lower vacuum still exists)

                (ii) models in which the messenger fields are part of the 
supersymmetry breaking sector (direct GM models) can avoid instabilities

However, gaugino masses vanish at leading order in such models
[Polchinski, Susskind ’82 - Komargodski, Shih ’09]

Proof [KS]:  consider renormalizable models of the form (with canonical K)

To ensure stability in all      directions,                        must not vanish for 
any X ⇒ constant polynomial in X

                  ⇒ 

To avoid a huge gaugino/sfermion mass hierarchy, must admit tree-level 
instabilities ➞ back to (i)

|λX0 +M |2 > |λf |

W = fX + 1
2 (λabX +mab)φaφb +

1
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mλ ∝ ∂ ln det(λX +m)

∂X
F = 0



(iii) can radiative corrections promote the supersymmetry breaking 
vacuum to the ground state of the theory ?

Consider the following class of models [                                     ]:

           stabilized at                      provided that

then

➞ 2 vacua (flat directions)

- the O’R vacuum, in which 

                                                                     Xi = flat directions

- the “messenger” vacuum, with broken SM gauge symmetry
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                                                  ➞ messenger vacuum lower

for 1-loop corrections to dominate over      , need

∆V ≡ V1 − V2 =
|λ̄·f |2

|λ|2
∆V |λ̄·f |2 ! |λ|2f2



Stabilizing the SUSY vacuum with radiative corrections

Compute the 1-loop effective potential                in the vicinity of the two 
vacua, then minimize it and compare the two energies

Small supersymmetry breaking limit ⇒ use effective Kaehler potential

with                                 and

where                                  is the superpotential mass matrix

V (1)(Xi)
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Mij ≡ ∂2W/∂φi∂φj

M1 : (ϕa, Ya) mass matrix

M2 : (Φ, Φ̃, Xi) mass matrix



Case without messengers:  no        matrix

    ⇒

where Za is a decreasing function of        :

The Xi are stabilized at the origin (no remaining flat direction if           ) 
and the vacuum energy is increased by an amount
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Case with messengers:

- around the O’R vacuum, the Xi are stabilized close to the origin 
(assuming                ), and the 1-loop vacuum energy is given by:

 

- around the messenger vacuum, one has                                , hence

Can now derive a sufficient condition for                              , which       
for               reads (with all couplings evaluated at           ):

This is possible only if
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The vacuum stability condition   

has a simple interpretation in terms of Goldstino couplings

Goldstino superfield:

Redefine                                                 ,  then

The vacuum stability condition can be rewritten:

where                        is the Goldstino-messenger coupling

➞ the Goldstino superfield should have suppressed couplings to the 
messengers with respect to the other O’R fields ZI
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Implications:

1) the vacuum stability condition + perturbativity imply

since                            , this results in an (irrelevant) overall suppression 
of soft masses relative to

      ➞ no suppression of gaugino masses relative to scalar masses

2) constraints on the various mass scales:

     + vacuuum stability condition

➞ minimal allowed values:

                ➞ no light messenger / O’R fields allowed

|λ·f̄ | ! |λ|f

msoft ∼ α
4π

|λ̄·f |
M

|λ|f
M

ma ∼ 105 TeV , M ∼ 106 TeV , f ∼ λ−1
X (104 TeV)2

m3/2 ∼ 2MeV (10−2/λX)[corresponding to                                        ]

ma ! M , |h̄a ·f | < m2
a , |λ̄·f | < M2 , msoft ∼ 1TeV



Conclusions

Gauge mediation is an attractive mechanism for transmitting 
supersymmetry breaking to the observable (MSSM) sector, but 
the simplest SUSY sectors lead to vanishing gaugino masses at 
leading order

This problem can be cured by allowing the supersymmetry 
breaking vacuum to be metastable

In some models, radiative corrections can cure the tree-level 
instabilities of the SUSY vacuum and promote it to the ground 
state of the theory, allowing for non-vanishing gaugino masses 
without metastability. This requires a suppressed coupling of the 
Goldstino superfield to the messengers


