Anomalous $t W b$ couplings Interplay of top and bottom physics

 Jure Drobnak

 Ljubljana, Slovenija

12. 4. 2011, Portorož

The role of heavy fermions in fundamental physics

Outline of the talk

- Anomalous $t W b$ couplings and top quark decays.
- Effects on helicity fractions of W boson.
- Analysis at NLO in QCD.
- Direct constraints.
- Anomalous $t W b$ couplings and $B_{d, s}-\bar{B}_{d, s}$ mixing.
- Effects on the the mixing amplitude M_{12}.
- Can these effects complie with the favored non-SM M_{12} values from recent fits?
- If so, what kind of helicity fractions do they predict? \leftarrow interplay
- Conclusions.

Helicity fractions of W boson in

$$
t \rightarrow b W
$$

- We can split the decay width $\Gamma(t \rightarrow W b)$ with respect to the polarization of the W boson.

$$
\Gamma_{t \rightarrow b W}=\Gamma_{L}+\Gamma_{-}+\Gamma_{+}, \quad \mathcal{F}_{i}=\Gamma_{i} / \Gamma
$$

- Helicity fractions \mathcal{F}_{i} are accessable through angular distribution of final state leptons M. Fischer et al. hep-ph/0011075

$\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta}=\frac{3}{8}(1+\cos \theta)^{2} \mathcal{F}_{+}+\frac{3}{8}(1-\cos \theta)^{2} \mathcal{F}_{-}+\frac{3}{4} \sin ^{2} \theta \mathcal{F}_{L}$

Helicity fractions of W boson in

$$
t \rightarrow b W
$$

- We can split the decay width $\Gamma(t \rightarrow W b)$ with respect to the polarization of the W boson.

$$
\Gamma_{t \rightarrow b W}=\Gamma_{L}+\Gamma_{-}+\Gamma_{+}, \quad \mathcal{F}_{i}=\Gamma_{i} / \Gamma
$$

- Helicity fractions \mathcal{F}_{i} are accessable through angular distribution of final state leptons

$$
\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta}=\frac{3}{8}(1+\cos \theta)^{2} \mathcal{F}_{+}+\frac{3}{8}(1-\cos \theta)^{2} \mathcal{F}_{-}+\frac{3}{4} \sin ^{2} \theta \mathcal{F}_{L}
$$

Theory side

- The "transverse plus" component is highly surpressed!
- Non-zero \mathcal{F}_{+}in SM comes from QCD and EW corrections, $m_{b} \neq 0$.

$$
\mathcal{F}_{L}^{\mathrm{SM}}=0.687(5)
$$

$$
\mathcal{F}_{+}^{\mathrm{SM}}=0.0017(1)
$$ 1005.2625

> H. S. Do et al. hep-ph/0209185

> M. Fischer et al.
> hep-ph/0101322

- Measured $\mathcal{F}_{+}>0.2 \%$ would indicate new physics effect!

Helicity fractions of W boson in

- We can split the decay width $\Gamma(t \rightarrow W b)$ with respect to the polarization of the W boson.

$$
\Gamma_{t \rightarrow b W}=\Gamma_{L}+\Gamma_{-}+\Gamma_{+}, \quad \mathcal{F}_{i}=\Gamma_{i} / \Gamma
$$

- Helicity fractions \mathcal{F}_{i} are accessable through angular distribution of final state leptons

$$
\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta}=\frac{3}{8}(1+\cos \theta)^{2} \mathcal{F}_{+}+\frac{3}{8}(1-\cos \theta)^{2} \mathcal{F}_{-}+\frac{3}{4} \sin ^{2} \theta \mathcal{F}_{L}
$$

Experiment side

- Most recent measurements from Tevatron

$\mathcal{F}_{L}=0.88(13)$	$\mathcal{F}_{+}=-0.15(9)$	CDF
${ }_{1003.0224}$		
$\mathcal{F}_{L}=0.67(10)$	$\mathcal{F}_{+}=0.023(53)$	D0
1011.6549		

- Projected sensitivity for LHC

$$
\sigma\left(\mathcal{F}_{+}\right)= \pm 0.002 \quad \sigma\left(\mathcal{F}_{L}\right)= \pm 0.02
$$

NP in $t W b$: effects on \mathcal{F}_{i}

Most general parameterization of $t W b$ vertex. J. A. Aguilar-Saavedra 0811.3842

- Helicity surpression present also in anomalous contributions.
- This mandates analysis at NLO in QCD.

J. Drobnak, J. F. Kamenik, S. Fajfer
1010.2402

NP in $t W b$: effects on \mathcal{F}_{i}

Most general parameterization of $t W b$ vertex. J. A. Aguilar-Saavedra
0811.3842

- Helicity surpression present also in anomalous contributions.
- This mandates analysis at NLO in QCD.
 J. Drobnak, J. F. Kamenik, S. Fajfer
1010.2402
- Indirect $b \rightarrow s \gamma$ constrains on $a_{L, R}, b_{L R, R L}$ stronger than present or projected precision of direct \mathcal{F}_{i} measurements. B. Grzadkowski, M. Misiak 0802.1413
- One exception: $b_{L R}$

NP in $t W b$: effects on \mathcal{F}_{i}

Most general parameterization of $t W b$ vertex.
J. A. Aguilar-Saavedra
0811.3842

- Helicity surpression present also in anomalous contributions.
- This mandates analysis at NLO in QCD.

J. Drobnak, J. F. Kamenik, S. Fajfer
1010.2402
- Indirect $b \rightarrow s \gamma$ constrains on $a_{L, R}, b_{L R, R L}$ stronger than present or projected precision of $\operatorname{direct} \mathcal{F}_{i}$ measurements. B. Grzadkowski, м. Misiak 0802.1413
- One exception: $b_{L R}$

	$\mathrm{SM}\left(\delta a_{L}\right)$	a_{R}	$b_{R L}$
$\mathcal{F}_{+}^{\mathrm{NLO}} / 10^{-3}$	1.32	1.34	1.34

- Presence of NP can not significantly affect \mathcal{F}_{+} value!

NP in $t W b$: effects on \mathcal{F}_{i}

Most general parameterization of $t W b$ vertex.
J. A. Aguilar-Saavedra
0811.3842

- Helicity surpression present also in anomalous contributions.
- This mandates analysis at NLO in QCD.

J. Drobnak, J. F. Kamenik, S. Fajfer
1010.2402
- Indirect $b \rightarrow s \gamma$ constrains on $a_{L, R}, b_{L R, R L}$ stronger than present or projected precision of direct \mathcal{F}_{i} measurements. B. Grzadkowski, м. Misiak 0802.1413
- One exception: $b_{L R}$
- CDF measurement of \mathcal{F}_{L} puts bounds on $b_{L R}$ that are competitive with indirect $b \rightarrow s \gamma$ constraints.

$$
\begin{aligned}
& b_{L R}<0.09,95 \% \text { C.L. from } \mathcal{F}_{+} \\
& b_{L R}<0.16,95 \% \text { C.L. from } b \rightarrow s \gamma
\end{aligned}
$$

$$
B_{d, s}-\bar{B}_{d, s} \boldsymbol{m i x i n g}
$$

\rightarrow Tevatron experiments quantifying B_{s} sector.
Some indications of NP

$$
B_{d, s}-\bar{B}_{d, s} \text { mixing }
$$

Tevatron experiments quantifying B_{s} sector.

Some indications of NP

- $\Delta \Gamma_{s}$ vs. $\phi_{s}^{J / \psi \phi}$.

D0
CDF
Note 6093-CONF
Public Note 10206

$B_{d, s}-\bar{B}_{d, s}$ mixing

Tevatron experiments quantifying B_{s} sector.

Some indications of NP

- $\Delta \Gamma_{s}$ vs. $\phi_{s}^{J / \psi \phi}$.

D0
Note 6093-CONF
Public Note 10206

$B_{d, s}-\bar{B}_{d, s}$ mixing

Tevatron experiments quantifying B_{s} sector.

Some indications of NP

- $\Delta \Gamma_{s}$ vs. $\phi_{s}^{J / \psi \phi}$.

D0
CDF
Note 6093-CONF Public Note 10206

- Dimuon charge asymmetry.

$$
B_{d, s}-\bar{B}_{d, s} \text { mixing }
$$

Tevatron experiments quantifying B_{s} sector.

Some indications of NP

$>\Delta \Gamma_{s}$ vs. $\phi_{s}^{J / \psi \phi}$.
D0
CDF
Note 6093-CONF Public Note 10206

- Dimuon charge asymmetry.
- Tension between $\sin 2 \beta$ and
$\operatorname{Br}\left(B \rightarrow \tau \nu_{\tau}\right)$.
A. Lenz, U. Nierste and CKMfitter group
1008.1593

$$
B_{d, s}-\bar{B}_{d, s} \boldsymbol{m i x i n g}
$$

Tevatron experiments quantifying B_{s} sector.

Some indications of NP

- $\Delta \Gamma_{s}$ vs. $\phi_{s}^{J / \psi \phi}$.

D0
CDF
Note 6093-CONF Public Note 10206

- Dimuon charge asymmetry.
- Tension between $\sin 2 \beta$ and
$\operatorname{Br}\left(B \rightarrow \tau \nu_{\tau}\right)$.
A. Lenz, U. Nierste and CKMfitter group
1008.1593

- Could NP be hiding in $B_{d, s}-\bar{B}_{d, s}$ mixing?

$$
M_{12}^{(d, s)}=M_{12}^{(d, s) \mathrm{SM}} \Delta_{d, s}
$$

- Analyzed and found consistancy with present data. $\Delta_{d, s}=1$ disfavored!
Z. Ligeti, M. Papucci, G. Perez, J. Zupan 1006.0432
A. Lenz, U. Nierste and CKMfitter group
1008.1593

NP in $t W b: B_{d, s}-\bar{B}_{d, s}$ mixing

- Anomalous $t W b$ can cause $\Delta_{d, s} \neq 1$!
- Effective vertex notation sufficient for setting direct constraints from $t \rightarrow W b$ decays.
- For indirect constraints we take a step further: effective theory, described by the Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda^{2}} \sum_{i} C_{i} \mathcal{Q}_{i}+\text { h.c. }+\mathcal{O}\left(1 / \Lambda^{3}\right)
$$

NP in $t W b: B_{d, s}-\bar{B}_{d, s}$ mixing

- Anomalous $t W b$ can cause $\Delta_{d, s} \neq 1$!
- Effective vertex notation sufficient for setting direct constraints from $t \rightarrow W b$ decays.
- For indirect constraints we take a step further: effective theory, described by the Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda^{2}} \sum_{i} C_{i} \mathcal{Q}_{i}+\text { h.c. }+\mathcal{O}\left(1 / \Lambda^{3}\right) .
$$

- Restrictions:
- Dim. 6 operators, invariant under SM gauge group, involving charged quark currents with W.
- Minimal Flavor Violation.
- Rid tree level FCNCs and flavor universal interactions affecting G_{F}.

NP in $t W b: B_{d, s}-\bar{B}_{d, s}$ mixing

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda^{2}} \sum_{i} C_{i} \mathcal{Q}_{i}+\text { h.c. }+\mathcal{O}\left(1 / \Lambda^{3}\right)
$$

Simplest linear MFV

$$
\begin{aligned}
\mathcal{Q}_{R R} & =V_{t b}\left[\bar{t}_{R} \gamma^{\mu} b_{R}\right]\left(\phi_{u}^{\dagger} \mathrm{i} D_{\mu} \phi_{d}\right) \\
\mathcal{Q}_{L L} & =\left[\bar{Q}_{3}^{\prime} \tau^{a} \gamma^{\mu} Q_{3}^{\prime}\right]\left(\phi_{d}^{\dagger} \tau^{a} \mathrm{i} D_{\mu} \phi_{d}\right) \\
& -\left[\bar{Q}_{3}^{\prime} \gamma^{\mu} Q_{3}^{\prime}\right]\left(\phi_{d}^{\dagger} \mathrm{i} D_{\mu} \phi_{d}\right) \\
\mathcal{Q}_{L R t} & =\left[\bar{Q}_{3}^{\prime} \sigma^{\mu \nu} \tau^{a} t_{R}\right] \phi_{u} W_{\mu \nu}^{a}, \\
\mathcal{Q}_{L R b} & =\left[\bar{Q}_{3} \sigma^{\mu \nu} \tau^{a} b_{R}\right] \phi_{d} W_{\mu \nu}^{a}
\end{aligned}
$$

Same operator bases used in $b \rightarrow s \gamma$ decays

- Rotation to mass eigen-basis: $Q_{i}=\left(V_{k i}^{*} u_{L k}, b_{L i}\right), \bar{Q}_{3}^{\prime}=\bar{Q}_{i} V_{t i}^{*}$.

NP in $t W b: B_{d, s}-\bar{B}_{d, s}$ mixing

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda^{2}} \sum_{i} C_{i} \mathcal{Q}_{i}+\text { h.c. }+\mathcal{O}\left(1 / \Lambda^{3}\right)
$$

Simplest linear MFV

$$
\begin{aligned}
\mathcal{Q}_{R R} & =V_{t b}\left[\bar{t}_{R} \gamma^{\mu} b_{R}\right]\left(\phi_{u}^{\dagger} \mathrm{i} D_{\mu} \phi_{d}\right), \\
\mathcal{Q}_{L L} & =\left[\bar{Q}_{3}^{\prime} \tau^{a} \gamma^{\mu} Q_{3}^{\prime}\right]\left(\phi_{d}^{\dagger} \tau^{a} \mathrm{i} D_{\mu} \phi_{d}\right) \\
& -\left[\bar{Q}_{3}^{\prime} \gamma^{\mu} Q_{3}^{\prime}\right]\left(\phi_{d}^{\dagger} \mathrm{i} D_{\mu} \phi_{d}\right), \\
\mathcal{Q}_{L R t} & =\left[\bar{Q}_{3}^{\prime} \sigma^{\mu \nu} \tau^{a} t_{R}\right] \phi_{u} W_{\mu \nu}^{a}, \\
\mathcal{Q}_{L R b} & =\left[\bar{Q}_{3} \sigma^{\mu \nu} \tau^{a} b_{R}\right] \phi_{d} W_{\mu \nu}^{a} .
\end{aligned}
$$

Same operator bases used in $b \rightarrow s \gamma$ decays B. Grzadkowski, M. Misiak 0802.1413

- Rotation to mass eigen-basis: $Q_{i}=\left(V_{k i}^{*} u_{L k}, b_{L i}\right), \bar{Q}_{3}^{\prime}=\bar{Q}_{i} V_{t i}^{*}$.
- $\mathcal{Q}_{L L}$ and $\mathcal{Q}_{L R t}$ modify also $t W d$ and $t W s$ couplings

NP in $t W b: B_{d, s}-\bar{B}_{d, s}$ mixing

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda^{2}} \sum_{i} C_{i} \mathcal{Q}_{i}+\text { h.c. }+\mathcal{O}\left(1 / \Lambda^{3}\right)
$$

Simplest linear MFV

$$
\mathcal{Q}_{R R}=V_{t b}\left[\bar{t}_{R} \gamma^{\mu} b_{R}\right]\left(\phi_{u}^{\dagger} \mathrm{i} D_{\mu} \phi_{d}\right)
$$

$$
\mathcal{Q}_{L L}=\left[\bar{Q}_{3}^{\prime} \tau^{a} \gamma^{\mu} Q_{3}^{\prime}\right]\left(\phi_{d}^{\dagger} \tau^{a} \mathrm{i} D_{\mu} \phi_{d}\right)
$$

$$
-\left[\bar{Q}_{3}^{\prime} \gamma^{\mu} Q_{3}^{\prime}\right]\left(\phi_{d}^{\dagger} \mathrm{i} D_{\mu} \phi_{d}\right)
$$

$$
\mathcal{Q L R Q}^{L}=\left[\bar{Q}_{3}^{\prime} \sigma^{\mu \nu} \tau^{a} t_{R}\right] \phi_{u} W_{\mu \nu}^{a}
$$

$$
\left(\mathcal{Q}_{L R b}\right)=\left[\bar{Q}_{3} \sigma^{\mu \nu} \tau^{a} b_{R}\right] \phi_{d} W_{\mu \nu}^{a}
$$

Same operator bases used in $b \rightarrow s \gamma$ decays
B. Grzadkowski, M. Misiak 0802.1413

- Rotation to mass eigen-basis: $Q_{i}=\left(V_{k i}^{*} u_{L k}, b_{L i}\right), \bar{Q}_{3}^{\prime}=\bar{Q}_{i} V_{t i}^{*}$.
- $\mathcal{Q}_{L L}$ and $\mathcal{Q}_{L R t}$ modify also $t W d$ and $t W s$ couplings
- $\mathcal{Q}_{L L}^{\prime}$ and $\mathcal{Q}_{L R b}$ modify also $u W b$ and $c W b$ couplings

Anomalous $t W b$ couplings and M_{12}

- The set of our seven dim-six operators contribute to $\Delta_{d, s}$
J. Drobnak, J. F. Kamenik, S. Fajfer 1102.4347

$$
\begin{aligned}
\Delta_{d, s} & =1-2.57 \kappa_{L L}+2.00 \kappa_{L L}^{\prime}-1.29 \kappa_{L L}^{\prime \prime}-1.54 \kappa_{L R t} \\
& -0.77 \kappa_{L R t}^{\prime}+\left\{4.48_{d}, 4.46_{s}\right\} \kappa_{R R}^{2}+\left\{4.15_{d}, 4.13_{s}\right\} \kappa_{L R b}^{2}
\end{aligned}
$$

- Analyze one operator at the time

Anomalous $t W b$ couplings and M_{12}

- The set of our seven dim-six operators contribute to $\Delta_{d, s}$

$$
\begin{aligned}
\Delta_{d, s} & =1-2.5 \kappa_{L L}+2.00 \kappa_{L L}^{\prime}-1.29 \kappa_{L L}^{\prime \prime}-1.54 \kappa_{L R t} \\
& -0.77 \kappa_{L R t}^{\prime}+\left\{4.48_{d}, 4.46_{s}\right\} \kappa_{R R}^{2}+\left\{4.15_{d}, 4.13_{s}\right\} \kappa_{L R b}^{2},
\end{aligned}
$$

- Analyze one operator at the time

1) $\kappa_{L L}=\frac{\operatorname{Re}\left[C_{L L}\right]}{\Lambda^{2} \sqrt{2} G_{F}}$ and $\kappa_{L R t}=\frac{\operatorname{Re}\left[C_{L R t}\right]}{\Lambda^{2} G_{F}}$ can not contribute new CPV phases. New bounds obtained

$$
\begin{aligned}
-0.082<\kappa_{L L}<0.078, & \text { at } 95 \% \text { C.L. }, \\
-0.14 & <\kappa_{L R t}<0.13,
\end{aligned} \text { at } 95 \% \text { C.L. } . ~ \$
$$

Anomalous $t W b$ couplings and M_{12}

- The set of our seven dim-six operators contribute to $\Delta_{d, s}$
J. Drobnak, J. F. Kamenik, S. Fajfer 1102.4347

$$
\begin{aligned}
\Delta_{d, s} & =1-2.57 \kappa_{L L}+2.00 \kappa_{L L}^{\prime}-1.29 \kappa_{L L}^{\prime \prime}-1.54 \kappa_{L R} \\
& -0.77 \kappa_{L R t}^{\prime}+\left\{4.48_{d}, 4.46_{s}\right\} \kappa_{R R}^{2}+\left\{4.15_{d}, 4.13_{s} \kappa_{L R b}^{2},\right.
\end{aligned}
$$

- Analyze one operator at the time

2) $\kappa_{R R}=\frac{C_{R R}}{\Lambda^{2} 2 \sqrt{2} G_{F}}$ and $\kappa_{L R b}=\frac{C_{L R b}}{\Lambda^{2} G_{F}}$ severely constrained by $b \rightarrow s \gamma$. Contribute to mixing only upon two insertions. No considerable effect on $\Delta_{d, s}$.

Anomalous $t W b$ couplings and M_{12}

- The set of our seven dim-six operators contribute to $\Delta_{d, s}$

- Analyze one operator at the time

3) $\kappa_{L L}^{\prime(\prime \prime)}=\frac{C_{L L}^{\prime(\prime \prime)}}{\Lambda^{2} \sqrt{2} G_{F}}$ and $\kappa_{L R t}^{\prime}=\frac{C_{L R t}^{\prime}}{\Lambda^{2} G_{F}}$ not overly constrained by $b \rightarrow s \gamma$.

	Re	Im
$\kappa_{L L}^{\prime}$	$-0.062_{-0.030}^{+0.063}$	$-0.110_{-0.024}^{+0.029}$
$\kappa_{L L}^{\prime \prime}$	$0.097_{-0.048}^{+0.098}$	$0.180_{-0.047}^{+0.037}$
$\kappa_{L R t}^{\prime}$	$0.160_{-0.160}^{+0.079}$	$0.290_{-0.074}^{+0.062}$

Central fitted values and 1σ intervals

- Up to 30% change in \mathcal{F}_{+}
- Up to 15% change in \mathcal{F}_{L}

Conclusions

Helicity fractions can give information about $t W b$ coupling

- Possible measured $\mathcal{F}_{+} \gg 0.1 \%$ can not be explained by a simple effective vertex.
- Latest measurements of \mathcal{F}_{L} give direct bounds on anomalous dipole couplings competitive with indirect bounds from $b \rightarrow s \gamma$ (MFV).

Conclusions

- Helicity fractions can give information about $t W b$ coupling
- Possible measured $\mathcal{F}_{+} \gg 0.1 \%$ can not be explained by a simple effective vertex.
- Latest measurements of \mathcal{F}_{L} give direct bounds on anomalous dipole couplings competitive with indirect bounds from $b \rightarrow s \gamma$ (MFV).
- Anomalous top coupling affect $B-\bar{B}$ mixing.
- For MFV models with small bottom Yukawa effects, the bounds are competitive (in some cases improved) compared to $b \rightarrow s \gamma$.
- MVF models with large bottom Yukawa effects could accommodate the latest global fits (Complex Wilson coefficients).

Conclusions

Helicity fractions can give information about $t W b$ coupling

- Possible measured $\mathcal{F}_{+} \gg 0.1 \%$ can not be explained by a simple effective vertex.
- Latest measurements of \mathcal{F}_{L} give direct bounds on anomalous dipole couplings competitive with indirect bounds from $b \rightarrow s \gamma$ (MFV).
- Anomalous top coupling affect $B-\bar{B}$ mixing.
- For MFV models with small bottom Yukawa effects, the bounds are competitive (in some cases improved) compared to $b \rightarrow s \gamma$.
- MVF models with large bottom Yukawa effects could accommodate the latest global fits (Complex Wilson coefficients).
-Favored non-zero dipole Wilson coefficient affects the helicity fractions!
- In addition other observables "beyond helicity fractions" might be affected
J. A. Aguilar-Saavedra, J. Bernabeu
1005.5382

Extra slides: MFV framework

- Lagrangian formally invariant under the SM flavor group
$\mathcal{G}^{\mathrm{SM}}=U(3)_{Q} \times U(3)_{u} \times U(3)_{d}$
- Only $\mathcal{G}^{\text {SM }}$ symmetry breaking spurionic fields in the theory are the up and down quark Yukawa matrices $Y_{u, d}$, formally transforming as $(3, \overline{3}, 1)$ and $(3,1, \overline{3})$ respectively.
- Most general $\mathcal{G}^{\mathrm{SM}}$ invariant quark bilinear flavor structures

$$
\bar{u} Y_{u}^{\dagger} \mathcal{A}_{u d} Y_{d} d, \quad \bar{Q} \mathcal{A}_{Q Q} Q, \quad \bar{Q} \mathcal{A}_{Q u} Y_{u} u, \quad \bar{Q} \mathcal{A}_{Q d} Y_{d} d
$$

where $\mathcal{A}_{x y}$ are arbitrary polynomials of $Y_{u} Y_{u}^{\dagger}$ and/or $Y_{d} Y_{d}^{\dagger}$,

- $\left\langle Y_{d}\right\rangle=\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right) / v_{d}$ and $\left\langle Y_{u}\right\rangle=V^{\dagger} \operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right) / v_{u}$

Extra slides: MFV framework

Linear MFV

- Simplest case of linear MFV where within $\left\langle\mathcal{A}_{x y}\right\rangle$ higher powers of $\left\langle Y_{d} Y_{d}^{\dagger}\right\rangle \simeq \operatorname{diag}\left(0,0, m_{b}^{2} / v_{d}^{2}\right)$ can be neglected. Neglecting also contributions suppressed by first and second generation quark masses, the only relevant flavor contributions of the arbitrary $\mathcal{A}_{x y}$ structures

$$
\begin{gathered}
\bar{t}_{R} V_{t b} b_{R}, \\
\bar{Q}_{i} V_{t i}^{*} t_{R},
\end{gathered}
$$

$\bar{Q}_{i} Q_{i}$,
$\bar{Q}_{3} b_{R}$,

$$
\begin{gathered}
\bar{Q}_{i} V_{t i}^{*} V_{t j} Q_{j}, \\
\bar{Q}_{i} V_{t i}^{*} V_{t b} b_{R},
\end{gathered}
$$

Extra slides: MFV framework

Non-Linear MFV

- Generalization to MFV scenarios where large bottom Yukawa effects can be important.
- Higher powers of $\left\langle Y_{d} Y_{d}^{\dagger}\right\rangle$ within $\mathcal{A}_{x y}$ effectively project to the third generation in the down sector yielding the following additional flavor structures

$$
\bar{Q}_{3} Q_{3}, \quad \bar{Q}_{3} V_{t b}^{*} V_{t j} Q_{j}, \quad \bar{Q}_{3} V_{t b}^{*} t_{R}
$$

