DM with only spin-dependent detection possibilities

Zoltan Ligeti

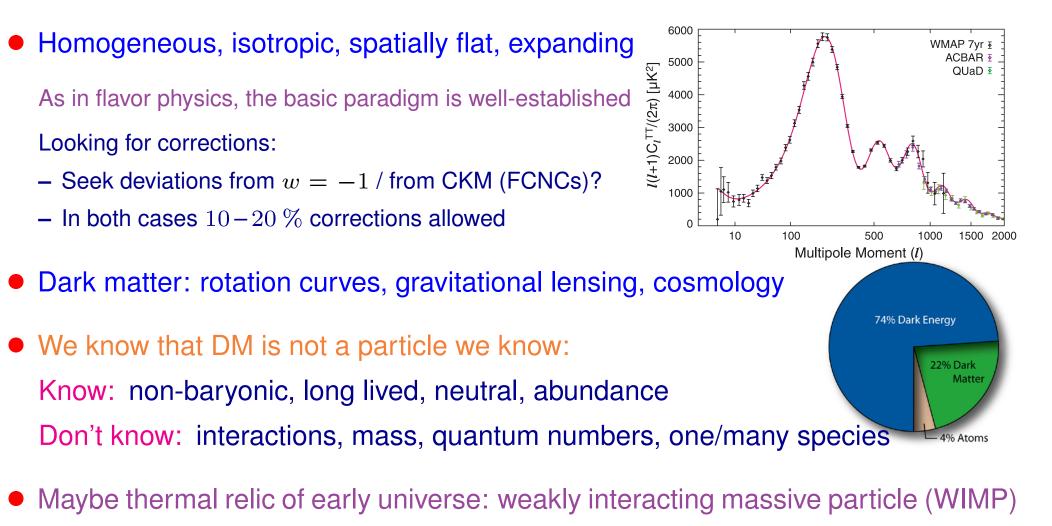
The Role of Heavy Fermions in Fundamental Physics April 11–14, 2011, Portorož, Slovenia

- Introduction, direct detection experiments
- Spin-dependent vs. spin-independent
- An unusual DM search in $B \to K^{(*)}\ell^+\ell^-$
- Conclusions

[Freytsis and ZL, 1012.5317]

[Freytsis, ZL, Thaler, 0911.5355]

What is dark matter?



If so, WIMP mass has to be around the TeV scale — LHC may directly produce it

Direct DM detection

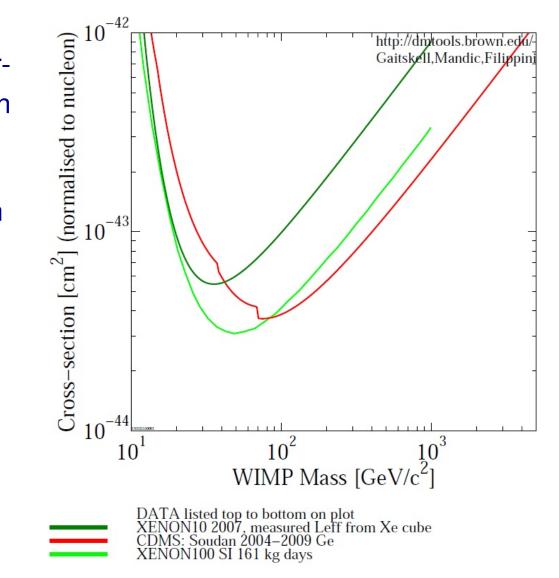
- All evidence is gravitational no unambiguous direct detection signals yet
 Steady increase in experimental sensitivity, will continue for some time
- The focus is often on spin-independent (SI) detection experiments, due to coherence effects giving an A^2 enhancement and (much) larger nuclear cross sections
- Uncertainties in nuclear matrix elements is substantial I'll not talk about them Recent LQCD results imply a few times smaller SI cross sections than often used
- Experiments capable of detecting SI cross section down to the irreducible atmospheric neutrino background, 10^{-48} cm², seem possible in the foreseeable future

[Note (since I can't remember): $10^{-36} \text{ cm}^2 = 1 \text{ pb}$]

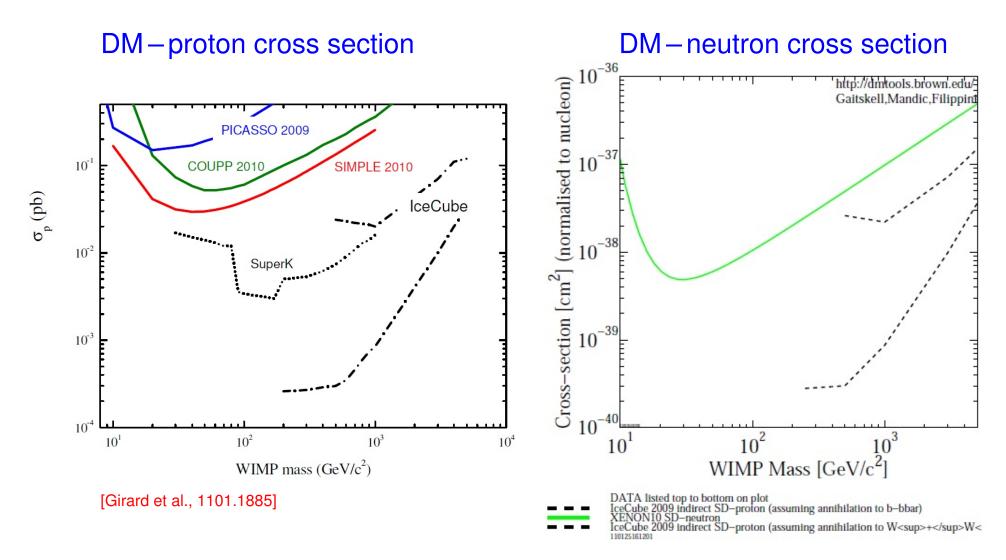
Current bounds — SI

 Cross sections normalized to pernucleon value for comparison between experiments

Many other experiements not shown



Current bounds — SD



• SD bounds are 5-6 orders of magnitude weaker than SI

Future sensitivity

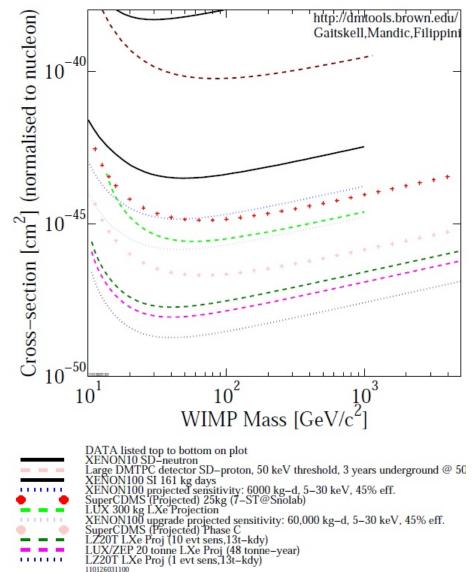
Near future:

XENON 100 will get to the 10^{-44} level SD experiments (not shown) to $\sim 10^{-40}$

Next decade (or two):

SI experiments will maintain (maybe even increase) their greater reach, down to the irreducible neutrino background

SD sensitivity (COUPP-500) $< 10^{-42} \, \mathrm{cm}^2$



Why bother with spin-dependent?

- Reasons to think about spin-dependent detection appearing on its own:
- The optimist:

Could the SD dark matter cross section in isolation tell us something interesting? Signicant correlation between SI & SD cross sections is claimed in most standard frameworks (MSSM, UED, little Higgs) — observing the contrary would tell us we are on to something unexpected [Bertrone *et al.*, 0705.2502; Belanger *et al.*, 0810.1362; Cohen *et al.*, 1001.3408]

• The pessimist:

What if no sign of SI dark matter interactions down to the neutrino background? Do we give up on direct detection? Could there still be something to detect?

The challenge of uniquely SD detection

- If the tree-level interactions are dominantly (exclusively) SD, they may still be detectable by other means
 - Since the sensitivity to SI cross sections is higher by several orders of magnitude (and will stay like that), a signal will only be seen in SD experiments if there are:
 - No detectable kinematically suppressed SI interactions at tree level
 - No detectable loop-induced SI contributions
 - Either of these could be just as easy to detect as the "dominant" SD interaction
- Operators: which ones lead to SD scattering in the non-relativistic limit?
- Mediators: are there models w/ enhanced SD operators, while subleading effects are absent or highly suppressed?

Assumptions: DM recoils off quarks, mediator is heavy enough to act as contact term in NR limit

Operator analysis (1)

• Scalar DM:

Operator		SI / SD	Suppression
${\mathcal O}_1^s =$	$\phi^2\bar q q$	SI	—
${\cal O}_2^s =$	$\phi^2\bar{q}\gamma^5 q$	SD	q^2
$\mathcal{O}_3^s =$	$\phi^\dagger\partial^\mu\phi~ar q\gamma_\mu q$	SI	—
$\mathcal{O}_4^s =$	$\phi^{\dagger}\partial^{\mu}\phi~ar{q}\gamma_{\mu}\gamma^{5}q$	SD	v^2

 \mathcal{O}_3^s and \mathcal{O}_3^s are only present for complex scalar DM

Operator analysis (2)

• Fermion DM:

	Operator	SI / SD	Suppression
Operator			Suppression
${\cal O}_1^f =$	$ar{\chi}\chi~ar{q}q$	SI	—
${\cal O}_2^{f} =$	$ar{\chi} i \gamma^5 \chi ~ar{q} q$	SI	q^2
${\cal O}_3^f =$	$ar{\chi}\chi~ar{q}i\gamma^5 q$	SD	q^2
${\cal O}_4^{f} =$	$ar{\chi}\gamma^5\chi~ar{q}\gamma^5q$	SD	q^4
$\mathcal{O}_5^f =$	$ar{\chi}\gamma^\mu\chi~ar{q}\gamma_\mu q$	SI	—
${\cal O}_6^{f} =$	$ar{\chi}\gamma^{\mu}\gamma^{5}\chi\;ar{q}\gamma_{\mu}q$	SI	v^2
		SD	q^2
${\cal O}_7^{f} =$	$ar{\chi}\gamma^{\mu}\chi~ar{q}\gamma_{\mu}\gamma^5 q$	SD	v^2 or q^2
${\cal O}_8^{f} =$	$ar{\chi}\gamma^{\mu}\gamma^{5}\chi~ar{q}\gamma_{\mu}\gamma^{5}q$	SD	—
$\mathcal{O}_9^f =$	$ar{\chi}\sigma^{\mu u}\chi~ar{q}\sigma_{\mu u}q$	SD	
$\mathcal{O}_{10}^f =$	$ar{\chi} i \sigma^{\mu u} \gamma^5 \chi \ ar{q} \sigma_{\mu u} q$	SI	q^2

If the DM is Majorana fermion, \mathcal{O}_5^f , \mathcal{O}_7^f , \mathcal{O}_9^f , \mathcal{O}_{10}^f vanish identically (odd under *C*)

Operator analysis (3)

• Vector DM:

Operator		SI / SD	Suppression
$\mathcal{O}_1^v =$	$B^{\mu}B_{\mu}ar{q}q$	SI	
$\mathcal{O}_2^v =$	$B^\mu B_\mu ar q \gamma^5 q$	SD	q^2
$\mathcal{O}_3^v =$	$B^{\dagger}_{\mu}\partial^{ u}B^{\mu}ar{q}\gamma_{ u}q$	SI	—
${\cal O}_4^v =$	$B^{\dagger}_{\mu}\partial^{ u}B^{\mu}ar{q}\gamma_{ u}\gamma^{5}q$	SD	v^2
$\mathcal{O}_5^v =$	$B^\mu \partial_\mu B^ u ar q \gamma_ u q$	SI	v^2q^2
${\cal O}_6^v =$	$B^\mu \partial_\mu B^ u ar q \gamma_ u \gamma^5 q$	SD	q^2
$\mathcal{O}_7^v =$	$\epsilon_{\mu u ho\sigma}B^{\mu}\partial^{ u}B^{ ho}ar{q}\gamma^{\sigma}q$	SI	v^2
		SD	q^2
$\mathcal{O}_8^v =$	$\epsilon_{\mu u ho\sigma}B^{\mu}\partial^{ u}B^{ ho}ar{q}\gamma^{\sigma}\!\gamma^{5}q$	SD	—

 \mathcal{O}_3^v and \mathcal{O}_3^v are only present for complex vector DM

Traditionally, disregard kinematically suppressed operators — this leaves for SD:

$$\mathcal{O}_8^f = \bar{\chi} \gamma_\mu \gamma^5 \chi \, \bar{q} \gamma^\mu \gamma^5 q$$
$$\mathcal{O}_9^f = \bar{\chi} \sigma_{\mu\nu} \chi \, \bar{q} \sigma^{\mu\nu} q$$
$$\mathcal{O}_8^v = \epsilon_{\mu\nu\rho\sigma} B^\mu \partial^\nu B^\rho \, \bar{q} \gamma^\sigma \gamma^5 q$$

- A kinematically suppressed operator can be competitive if the mediator scale is low and unsuppressed operators are absent — both of these features are present in the case of spontaneous global symmetry breaking [Chang et al., 0908.3192]
- Need to consider suppressed operators with pseudoscalar currents:

$$\mathcal{O}_{2}^{s} = \phi^{2} \bar{q} \gamma^{5} q$$
$$\mathcal{O}_{4}^{f} = \bar{\chi} \gamma^{5} \chi \bar{q} \gamma^{5} q$$
$$\mathcal{O}_{2}^{v} = B^{\mu} B_{\mu} \bar{q} \gamma^{5} q$$

Operators from mediators

- Assume: operators from integrating out mediators w/ renormalizable interactions
 Ways to get SD operators and nothing else for heavy mediators [Agrawal et al., 1003.5905]
 Add to their study the possibility of light mediators
- Usually only the leading contribution from each operator is retained Kinematic suppressions: $v^2 \sim 10^{-6}$ $q^2/m_p m_\chi \sim 10^{-6}$ for $q^2 \sim (100 \,\mathrm{MeV})^2$

This is comparable to (SD sensitivity) / (SI sensitivity) — if suppressed SI contributions exist, they should lead to detectable effects at roughly the same time

• Have to check all the possibilities...

Pseudoscalar *a* exchange — no additional contributions generated

Loop-induced subleading effects

• Consider, e.g., Z exchange at tree level:

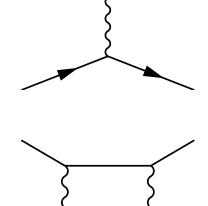
$$\frac{g_2^2}{2\cos^2\theta_W} T_3^q Q \frac{1}{m_Z^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \, \bar{q} \gamma_\mu \gamma^5 q$$

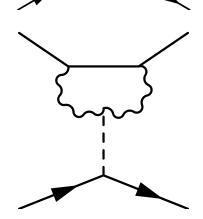
• Loop effects induce the SI operator:

$$\frac{1}{(4\pi)^2} \frac{g_2^4 Q^2}{\cos^4 \theta_W m_Z} \left[\frac{(T_3^q)^2}{2m_Z^2} + \frac{1}{4m_h^2} \right] m_q \,\bar{\chi}\chi \,\bar{q}q \qquad (m_q \ll m_Z \ll m_\chi)$$

For $Q \sim \mathcal{O}(1)$, the SI cross section is 6-7 orders of magnitude smaller than the SD one

However, if the DM is in an SU(2) n-plet, the cross section $\sim n^2$





Loop effects: pseudoscalar mediator

• Tree-level exchange:

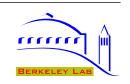
$${1\over m_a^2}\,\xi\,y_q\,m_\phi\,\phi^\dagger\phi~ar q i\gamma^5 q$$

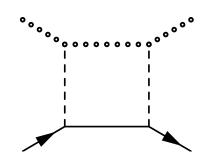
• Loop effects induce the SI operator:

$$\frac{1}{(4\pi)^2} \frac{\xi^2 y_q^2}{m_\phi^2} C_S \phi^\dagger \partial^\mu \phi \, \bar{q} \gamma_\mu q$$

Box diagram can be evaluated in terms of Passarino-Veltman integrals — for $m_a/m_{\phi} = 0.01$, $C_S \sim 80$ [involves $\ln^2(m_a/m_{\phi})$ and $\ln(m_a/m_{\phi})$ dependence]

- Worked out other cases as well...







Subleading effects — pseudoscalar mediator

- Unlike Z case, we expect these loops have no detectable contribution Why?
 - The loop contribution is suppressed by an additional factor of m_a^2/m_χ^2
 - As Goldstone bosons would be expected to couple proportional to quark mass, loop effects should go as (Yukawa)²
 - A light pseudoscalar mediator is the only interaction providing a detectable SD cross section that would not be seen in a SI experiment roughly the same time
- So far, considered exclusively the role of mediators in direct detection
- Can this mechanism be implemented in a viable model?
 The "axion portal" provides an example [Nomura, Thaler, 0810.5397]

The axion portal

• A scalar field charged under a new global $U(1)_X$, spontaneously breaks to

$$S = \left(f_a + \frac{s}{\sqrt{2}}\right) \exp\left(\frac{ia}{\sqrt{2}f_a}\right)$$

New fermion coupled via $\xi S \chi \chi^c + h.c.$, then generate fermion mass $m_{\chi} = \xi f_a$

Let the SM (w/ 2HDM) be charged under $U(1)_X$ so the only coupling to S is via $\mathcal{L} = \lambda S^n H_u H_d + h.c.$, and $U(1)_X$ is a Peccei-Quinn symmetry

The new fermions stay in thermal equilibrium though

$$\langle \sigma v \rangle_{\chi\chi^c \to sa} = \frac{m_{\chi}^2}{64\pi f_a^4} \left(1 - \frac{m_s^2}{4m_{\chi}^2} \right) + \mathcal{O}(v^4)$$

• If all scales $\sim \text{TeV}$, $\langle \sigma v \rangle \sim 3 \times 10^{-26} \, \text{cm}^3/s$, so χ has right relic density to be DM

Axion portal and direct detection

• Two mediators present, s and a — Is the SI cross section due to s negligible?

$$\sigma_{\rm SI}^{\chi N} \approx (2 \times 10^{-42} \,\mathrm{cm}^2) \,\xi^2 \,\epsilon^2 \left(\frac{100 \,\mathrm{GeV}}{m_s}\right)^4 \qquad (\epsilon \sim v_{\rm ew} f_a)^2$$

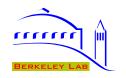
In original scenario $m_s \sim 10 \,\text{GeV}$ for Sommerfeld enhancement, which was in tension with current bounds — removing this requirement, it is natural to have $m_s \sim f_a$, and SI cross section is below neutrino background

• Is the SD cross section large enough?

$$\sigma_{\rm SD}^{\chi p} \approx (2 \times 10^{-37} \,\mathrm{cm}^2) \,\xi^2 \sin^2 \theta \, \frac{q_{\rm ref}^2}{4m_\chi^2} \left(\frac{1 \,\mathrm{GeV}}{m_a}\right)^4$$

with $\tan \theta = n \sin 2\beta \left[v_{\rm ew}/(2f_a) \right]$, $q_{\rm ref}^2 = (100 \,{\rm MeV})^2$, and $m_a = O(\text{few 100 MeV})$, the cross section is $\text{few} \times 10^{-40} \,{\rm cm}^2$, near current bounds

[SI cross section induced at one-loop is indeed much below the atmospheric neutrino background]



Axion portal and B decays

Dark sectors — the motivation two years ago

- Observations of cosmic ray excesses led to a flurry of DM model building
 Standard WIMPs unable to fit the data (lack of antiprotons, hard lepton spectrum)
- Idea: DM annihilates to SM through light bosons
 [Pospelov, Ritz, Voloshin; Arkani-Hamed et al.]

 $\chi\chi \to \phi^{(*)}\phi^{(*)}, \qquad \phi \to \ell^+\ell^-, \, \pi^+\pi^-, \, \dots$

"Dark bosons" couple to leptons with $\alpha_X = \lambda_X^2/(4\pi)$, lots of different constraints depending on mass and coupling

• Most popular scenario: ϕ^{μ} couples to $\bar{\psi}\gamma_{\mu}\psi$ and mixes with γ ("dark photons")

The axion portal in $B o K^{(*)} \ell^+ \ell^-$?

The new particle could also be a scalar with axion-like couplings [Nomura, Thaler, 0810.5397]

$$\mathcal{L}_{\rm int} = \frac{\lambda}{f_a} \left(\bar{\psi} \gamma^{\mu} \gamma_5 \psi \right) \partial_{\mu} a \quad \rightarrow \quad \frac{\lambda \, m_{\psi}}{f_a} \left(\bar{\psi} \gamma_5 \psi \right) a$$

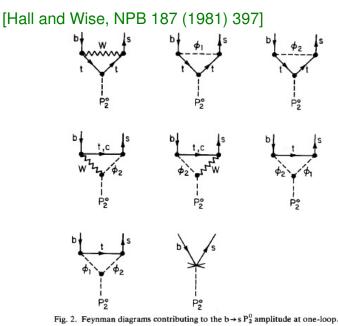
The most interesting part of parameter space is thought to be:

$$m_K - m_\pi < m_a \lesssim 800 \,\mathrm{MeV}, \qquad f_a \sim (1-3) \,\mathrm{TeV}$$

- Coupling to fermions $\propto m_{\psi}$, so FCNC $b \rightarrow sa$ loops are enhanced by m_t With only \mathcal{L}_{int} , divergent loops \Rightarrow need to embed in a renormalizable theory
- A simple explicit model: Peccei-Quinn symmetric NMSSM (2HDM + a singlet) (SUSY part not directly relevant for us, more general DFSZ-axion)

• At one loop: $\mathcal{M}(b \to sa) \propto \mathcal{M}(b \to sA^0)_{2HDM}$ (from tW, tH, tHW penguins)

The 2HDM calculation



in both models I and II. The functions $F_i(m, M_{\phi_2}, M_W)$ are

$$F_{1}(m, M_{\phi_{2}}, M_{w}) = \left(\frac{M_{w}^{2} - \frac{1}{2}m^{2}}{M_{w}^{2} - m^{2}}\right) \left(\frac{M_{w}^{2}}{M_{w}^{2} - m^{2}} \ln\left(\frac{M_{\phi_{2}}^{2}}{m^{2}}\right) - 1\right)$$

$$+ \frac{2M_{w}^{2}}{M_{w}^{2} - M_{\phi_{2}}^{2}} \left(\frac{M_{\phi_{2}}^{2}}{M_{\phi_{2}}^{2} - m^{2}} \ln\left(\frac{M_{\phi_{2}}^{2}}{m^{2}}\right) - \frac{M_{w}^{2}}{M_{w}^{2} - m^{2}} \ln\left(\frac{M_{w}^{2}}{m^{2}}\right)\right)$$

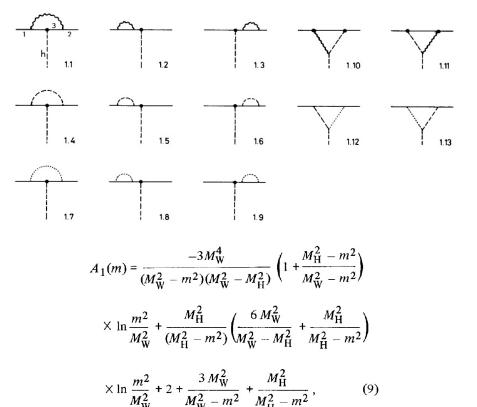
$$+ \frac{1}{2}(M_{w}^{2} - M_{\phi_{2}}^{2}) \left(\frac{-M_{\phi_{2}}^{2}}{(M_{w}^{2} - M_{\phi_{2}}^{2})(M_{\phi_{2}}^{2} - m^{2})}\right)$$

$$+ \frac{M_{w}^{2}M_{\phi_{2}}^{2}}{(M_{w}^{2} - m^{2})(M_{w}^{2} - M_{\phi_{2}}^{2})^{2}} \ln\left(\frac{M_{w}^{2}}{M_{\phi_{2}}^{2}}\right)$$

$$+ \frac{M_{\phi_{2}}^{2}m^{2}}{(M_{w}^{2} - m^{2})(M_{\phi_{2}}^{2} - m^{2})^{2}} \ln\left(\frac{M_{\phi_{2}}^{2}}{m^{2}}\right) + \frac{1}{2} \frac{m^{2}}{(M_{w}^{2} - m^{2})(M_{\phi_{2}}^{2} - m^{2})}$$

$$+ \frac{1}{2} \frac{M_{w}^{4}}{(M_{w}^{2} - M_{\phi_{2}}^{2})(M_{w}^{2} - m^{2})^{2}} \ln\left(\frac{M_{w}^{2}}{m^{2}}\right)$$

$$- \frac{1}{2} \frac{M_{\phi_{2}}^{4}}{(M_{w}^{2} - M_{\phi_{2}}^{4})(M_{\phi_{2}}^{2} - m^{2})^{2}} \ln\left(\frac{M_{\phi_{2}}^{2}}{m^{2}}\right)\right), \quad (17)$$



- Results disagree, neither knew about other
- Many papers cited both, none commented on disagreement... so we computed it all...

ZL – p. 20

The current data

Considering the combined BaBar / Belle rate measurements and the spectra...

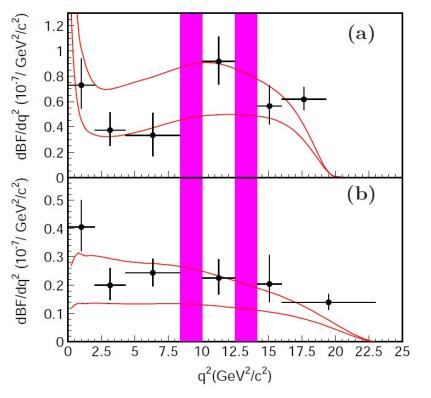
we used:
$$\mathcal{B}(B \to Ka) \times \mathcal{B}(a \to \mu^+ \mu^-) < 10^{-7}$$

[at a high, but who-knows-what CL...]

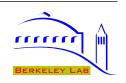
Can improve independent of form factor uncertainties

For this physics $K\ell^+\ell^-$ may be better than $K^*\ell^+\ell^-$, since no O_7 (photon penguin) enhancement at small q^2 in K mode

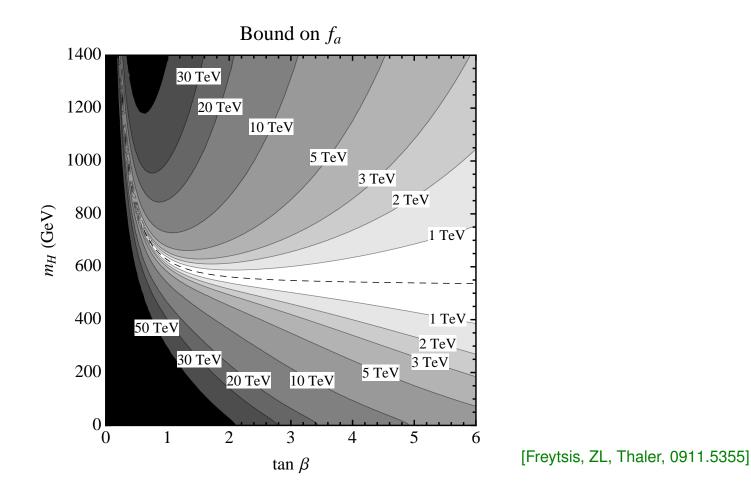
[Wei et al., Belle Collaboration, PRL 103 (2009) 171801]



- BaBar and Belle should be able to set a significantly better bound
- LHCb should be able to improve it substantially



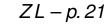
The bound from $B o K \ell^+ \ell^-$



• Cancellation in a narrow region near the dashed line (between $\cot \beta$ and $\cot^3 \beta$ terms)

• In most of the parameter space this is the best bound (then $\Upsilon(3S) \rightarrow \gamma A^0$)

$$(5) \rightarrow \gamma A$$
)
[BaBar, 0902.2176]



Conclusions

- Most DM models with dominantly spin-dependent interactions will not be (much) harder to see in spin-independent experiments through subleading interactions
- Unique exception seems to be cases where the mediators are light pseudoscalars
- A viable dark matter model already exists with such a mechanism
- A significant part of its parameter space is best probed in B and Υ decays
- Do other (not much more complex) models with SD interaction dominance exist?

Backup slides