In pursuit of determining the \mathbf{B}_{s} mixing phase β_{s}

$$
\begin{aligned}
& \text { Fulvia De Fazio } \\
& \text { INFN - Bari }
\end{aligned}
$$

The Role of Heavy Fermions in Fundamental Physics Portoroz 2011

Outline

- CP violation in B_{s} system
- An example of a minimal flavour violation model: how does β_{s} change?
- Modes to access $\beta_{s}: B_{s} \rightarrow X_{c c} L$ (L=light meson) and the special case of $B_{s} \rightarrow f_{0}(980)$
- New Physics effects in non leptonic B_{s} decays

$B_{\text {s }}$ system

Analysis of the B_{s} unitarity triangle is an important test of the SM description of CP violation

$$
V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0
$$

$$
\begin{gathered}
B_{d}-\bar{B}_{d}{\frac{V_{d d}}{V_{u b}^{*}}}_{V_{c d}^{*} V_{c b}^{*}} \beta_{d}=\arg \left(-\frac{V_{t b} V_{t d}^{*}}{V_{c b} V_{c d}^{*}}\right)=0.38 \pm 0.02 \quad \frac{V_{t d} V_{t b}^{*}}{V_{c d} V_{c b}^{*}} \\
0 \angle \gamma
\end{gathered}
$$

$$
B_{s}-\bar{B}_{s}
$$

$$
\beta_{s}=\arg \left(-\frac{V_{t b} V_{t s}^{*}}{V_{c b} V_{c s}^{*}}\right) \approx 0.02 \mathrm{rad}
$$

$B_{s} \rightarrow J / \psi \phi$

The final state is an admixture of different CP eigenstates
\longrightarrow can be disentangled considering the angular distribution of the decay products:

$$
J / \psi \rightarrow \ell^{+} \ell^{-} \quad \phi \rightarrow K^{+} K^{-}
$$

Three independent polarization amplitudes: with

$$
|A|^{2}=\left|A_{0}\right|^{2}+\left|A_{i}\right|^{2}+\left|A_{\perp}\right|^{2}
$$

J / ψ rest frame

θ, ϕ, ψ, transversity angles
ϕ rest frame

Numerical results for the two solutions:

$$
\begin{aligned}
\Delta \Gamma_{s} & =0.154_{-0.070}^{+0.054} \mathrm{ps}^{-1}, \\
& \in[+0.036,+0.264] \text { at } 90 \% \mathrm{CL} \\
\phi_{s}^{J / \psi \phi}=-2 \beta_{s}^{J / \psi \phi} & =-0.77_{-0.37}^{+0.29} \mathrm{rad} \\
& \in[-1.47,-0.29] \text { at } 90 \% \mathrm{CL},
\end{aligned}
$$

$$
\begin{aligned}
\Delta \Gamma_{s} & =-0.154_{-0.054}^{+0.070} \mathrm{ps}^{-1}, \\
& \in[-0.264,-0.036] \text { at } 90 \% \mathrm{CL} \\
\phi_{s}^{J / \psi \phi}=-2 \beta_{s}^{J / \psi \phi} & =-2.36_{-0.29}^{+0.37} \mathrm{rad} \\
& \in[-2.85,-1.65] \text { at } 90 \% \mathrm{CL} .
\end{aligned}
$$

HFAG: consistency of SM predictions is at level of 2.2σ

New CDF measurement of β_{s}
$\beta_{s} \in[0.0,0.5] \mathrm{U}[1.1,1.5] \quad 68 \% \mathrm{CL}$ $\beta_{s} \in[-0.1,0.7] \mathrm{U}\left[0.9, \frac{\pi}{2}\right] \quad 95 \% \mathrm{CL}$

Reconciles measurement with SM

...but
From L. Oakes, CDF Collab., 1102.0436
Talk at FPCP, Torino May 2010

LHCb measurement of β_{s}

from U. Uwer, talk at Beauty 2011
\longleftarrow SM P-value: 22\% ("1.2б")

$$
\begin{aligned}
& \phi_{\mathrm{s}} \in[-2.7,-0.5] \text { rad at } 68 \% \mathrm{CL} \\
& \phi_{\mathrm{s}} \in[-3.5,0.2] \text { rad at } 95 \% \mathrm{CL}
\end{aligned}
$$

Measurement of the asymmetry:

$$
A_{s l}^{b}=\frac{N_{b}^{++}-N_{b}^{--}}{N_{b}^{++}+N_{b}^{--}}
$$

$N_{b}^{++} \longrightarrow \quad \begin{aligned} & \text { number of events with two b-hadrons decaying } \\ & \text { semileptonically producing two positively charged muons }\end{aligned}$

while

$$
A_{s l}^{b}(S M)=-0.00957 \pm 0.00251 \text { (stat) } \pm 0.00146 \text { (syst) }
$$

The asymmetry is interpreted as due to the mixing of the neutral mesons decaying semileptonically The discrepancy signals an anomalous CP-violation in the oscillation process

Example of a MFV model

Appelquist-Cheng-Dobrescu (ACD) Model with a single Universal Extra Dimension (UED)

- Compactification on a orbifold: the 5th $\operatorname{dim} y$ varies on a circle of radius \mathbf{R} with periodic boundary conditions; fields are required to have a definite parity under $y \rightarrow-y$
- The existence of an extra dim reflects in the appearance of a tower of KK modes for each particle of the model
\leftrightarrows
Modification of the Wilson coefficients in effective hamiltonians

$$
\begin{aligned}
& C\left(x_{t}, \frac{1}{R}\right)=C_{(0)}\left(x_{t}\right)+\sum_{n=1}^{\infty} C_{n}\left(x_{t}, x_{n}\right) \quad x_{n}=\frac{m_{n}^{2}}{M_{W}^{2}} \quad m_{n}=\frac{n}{R} \\
& \text { SM result }
\end{aligned}
$$

Unitarity triangles in the ACD model

ACD is a minimal flavour violation model:

- CKM has the same structure as in the SM
- CKM is unitary and described by 4 parameters, one of which is a complex phase
- the CKM phase is the only source of CP violation

What about the unitarity triangles?

- CKM elements extracted from tree level processes where KK modes do not contribute should be the same, i.e. $\left|\mathrm{V}_{\mathrm{us}}\right|,\left|\mathrm{V}_{\mathrm{ub}},\left|\mathrm{V}_{\mathrm{cb}}\right|\right.$
- Quantities obtained from loop-induced processes where the KK contribute could be different, i.e. $\left|\mathrm{V}_{\mathrm{td}}\right|,\left|\mathrm{V}_{\mathrm{ts}}\right|$

bs triangle in the ACD model

$$
V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0
$$

from $B_{s}-\bar{B}_{s}$ mixing:

$$
\left|V_{t s}\right|_{A C D}=\left|V_{t s}\right|_{S M} \sqrt{\frac{S_{0}\left(x_{t}\right)}{S\left(x_{t}, 1 / R\right)}}
$$

$$
\beta_{s}=\operatorname{Arg}\left[-\frac{V_{t s} V_{t b}^{*}}{V_{c s} V_{c b}^{*}}\right]
$$

also becomes $1 / \mathrm{R}$ dependent

\longrightarrow Notice the different scale on the two axes!

SM triangle

$$
\left.\beta_{s}\right|_{S M} \cong 0.017 \mathrm{rad}
$$

\longrightarrow Notice the different scale on the two axes!

ACD triangle for $\frac{1}{R}=300 \mathrm{GeV}$

Most MFV models cannot justify large values of β_{s} if experimentally found

$B_{s} \rightarrow X_{c \bar{c}} L$

Tree level, colour suppressed

$$
\begin{aligned}
X_{c \bar{c}} & =J / \psi, \eta_{c}, \Psi(2 S), \eta_{c}(2 S), \chi_{c 0, c 1, c 2}, h_{c} \\
L & =\phi, \eta, \eta^{\prime}, f_{0}(980)
\end{aligned}
$$

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{f}_{\mathbf{0}}(\mathbf{9 8 0})$ form factors

Definition:

$$
\begin{gathered}
\left\langle f_{0}\left(p_{f_{0}}\right)\right| \bar{s} \gamma_{\mu} \gamma_{5} b\left|\bar{B}_{s}\left(p_{B_{s}}\right)\right\rangle=-i\left\{F_{1}\left(q^{2}\right)\left[P_{\mu}-\frac{m_{B_{s}}^{2}-m_{f_{0}}^{2}}{q^{2}} q_{\mu}\right]+F_{0}\left(q^{2}\right) \frac{m_{B_{s}}^{2}-m_{f_{0}}^{2}}{q^{2}} q_{\mu}\right\} \\
\left\langle f_{0}\left(p_{f_{0}}\right)\right| \bar{s} \sigma_{\mu \nu} \gamma_{5} q^{\nu} b\left|\bar{B}_{s}\left(p_{B_{s}}\right)\right\rangle=-\frac{F_{T}\left(q^{2}\right)}{m_{B_{s}}+m_{f_{0}}}\left[q^{2} P_{\mu}-\left(m_{B_{s}}^{2}-m_{f_{0}}^{2}\right) q_{\mu}\right]
\end{gathered}
$$

Quantities computed using QCD Sum Rules

$\mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{f}_{\mathbf{0}} \mathbf{(9 8 0)}$ form factors in light-cone sum rules

Starting point: a correlation function

Current defining the transition matrix element

Interpolating current for the B_{s} meson

The sum rule consists in evaluating the correlator in two ways: at hadronic level and in QCD

Equating the two representations provides with a Sum Rule allowing to calculate the form factors

$B_{s} \rightarrow f_{0}(980)$ form factors in light-cone sum rules

Hadronic representation:

QCD representation:

$$
\Pi^{\mathrm{QCD}}\left(p_{f_{0}}, q\right)=\frac{1}{\pi} \int_{\left(m_{b}+m_{s}\right)^{2}}^{\infty} d s \frac{\operatorname{Im} \Pi^{\mathrm{QCD}}\left(s, q^{2}\right)}{s-\left(p_{f_{0}}+q\right)^{2}}
$$

obtained expanding the T-product near the light-cone
written in terms of the f_{0} light cone distribution amplitudes

$$
\begin{aligned}
\left\langle f_{0}\left(p_{f_{0}}\right)\right| \bar{s}(x) \gamma_{\mu} s(0)|0\rangle & =\bar{f}_{f_{0}} p_{f_{0} \mu} \int_{0}^{1} d u e^{i u p_{f_{0}} \cdot x} \Phi_{f_{0}}(u) \longrightarrow \text { twist } 2 \\
\left\langle f_{0}\left(p_{f_{0}}\right)\right| \bar{s}(x) s(0)|0\rangle & =m_{f_{0}} \bar{f}_{f_{0}} \int_{0}^{1} d u e^{i u p_{f_{0}} \cdot x} \Phi_{f_{0}}^{s}(u) \\
\left\langle f_{0}\left(p_{f_{0}}\right)\right| \bar{s}(x) \sigma_{\mu \nu} s(0)|0\rangle & =-\frac{m_{f_{0}}}{6} \bar{f}_{f_{0}}\left(p_{f_{0} \mu} x_{\nu}-p_{f_{0} \nu} x_{\mu}\right) \int_{0}^{1} d u e^{i u p_{f_{0}} \cdot x} \Phi_{f_{0}}^{\sigma}(u)
\end{aligned}
$$

$B_{s} \rightarrow f_{\mathbf{0}}(\mathbf{9 8 0})$ form factors in light-cone sum rules

Final steps in the sum rule:

- global duality assumption

$$
\int_{s_{0}}^{\infty} d s \frac{\rho^{h}\left(s, q^{2}\right)}{s-\left(p_{f_{0}}+q\right)^{2}}=\frac{1}{\pi} \int_{s_{0}}^{\infty} d s \frac{\operatorname{Im} \Pi^{\mathrm{QCD}}\left(s, q^{2}\right)}{s-\left(p_{f_{0}}+q\right)^{2}}
$$

- Borel transform
- improves the convergence of the OPE
- suppresses higher states contribution

$$
\mathcal{B}\left[\frac{1}{\left(s+Q^{2}\right)^{n}}\right]=\frac{\exp \left(-s / M^{2}\right)}{\left(M^{2}\right)^{n}(n-1)!}
$$

final sum rule

$$
\frac{\left\langle f_{0}\left(p_{f_{0}}\right)\right| j_{\Gamma_{1}}\left|\overline{B_{s}}\left(p_{f_{0}}+q\right)\right\rangle\left\langle\overline{B_{s}}\left(p_{f_{0}}+q\right)\right| j_{\Gamma_{2}}|0\rangle}{m_{B_{s}}^{2}-\left(p_{f_{0}}+q\right)^{2}}=\frac{1}{\pi} \int_{\left(m_{b}+m_{s}\right)^{2}}^{s_{0}} d s \frac{\operatorname{Im} \Pi^{Q C D}\left(s, q^{2}\right)}{s-\left(p_{f_{0}}+q\right)^{2}}
$$

$B_{s} \rightarrow f_{0}(980)$ form factors : results

Parameters of the $B_{s} \rightarrow f_{0}$ form factors by LCSR at the leading order.

	$F_{i}\left(q^{2}=0\right)$	a_{i}	b_{i}	$F_{i}\left(q_{\max }^{2}\right)$
F_{1}	0.185 ± 0.029	$1.44_{-0.99}^{+0.13}$	$0.59_{-0.05}^{+0.07}$	$0.614_{-0.102}^{+0.158}$
F_{0}	0.185 ± 0.029	$0.47_{-0.09}^{+0.12}$	$0.01_{-0.09}^{+0.08}$	$0.268_{-0.088}^{+0.055}$
F_{T}	0.228 ± 0.036	$1.42_{-0.10}^{+0.13}$	$0.60_{-0.05}^{+0.06}$	$0.714_{-0.126}^{+0.197}$

$$
F_{i}\left(q^{2}\right)=\frac{F_{i}(0)}{1-a_{i} q^{2} / m_{B_{s}}^{2}+b_{i}\left(q^{2} / m_{B_{s}}^{2}\right)^{2}}
$$

P.Colangelo, W.Wang, FDF PRD81:074001,2010

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \mathrm{f}_{\mathbf{0}}(\mathbf{9 8 0})$

Factorization assumption

$$
\mathcal{A}\left(\bar{B}_{s} \rightarrow J / \psi f_{0}\right)=\frac{G_{F}}{\sqrt{2}} V_{c b} V_{c s}^{*} a_{2} m_{\psi} f_{J / /} F_{1}^{B_{s} \rightarrow f_{0}}\left(m_{J / \psi}^{2}\right) 2\left(\epsilon^{*} \cdot p_{B_{s}}\right)
$$

assuming it is the same

$$
\mathcal{B} \mathcal{R}\left(\bar{B}_{s} \rightarrow J / \psi f_{0}\right)=(3.1 \pm 2.4) \times 10^{-4}
$$

comparing to the golden mode
$B_{s} \rightarrow J / \Psi f_{0}(980)$ could be accessed: - the BR is smaller than for the golden mode

- no angular analysis is required
- f_{0} can be reconstructed in two charged pions
$B_{s} \rightarrow J / \Psi f_{0}(980)$: recent experimental data

dich
Phys. Lett. B 698 (2011) 115.

LHCb Collab. PLB 648 (11) 115

Belle Collab. 1102.2759

CDF Collab. Note cdf10404.pdf

All compatible with our prediction

Other modes induced by $\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c}} \mathrm{s}$ transition

P. Colangelo, W. Wang, FDF arXiv:1009.4612
Amplitude in generalized factorization:

$$
\mathcal{A}\left(\bar{B}_{a} \rightarrow M_{c \bar{c}} L\right)=\frac{G_{F}}{\sqrt{2}} V_{c b} V_{c s}^{*} e_{2}^{\text {eff }}(\mu)\left\langle M_{c \bar{c}}\right| \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) c|0\rangle\langle L| \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b\left|\bar{B}_{a}\right\rangle
$$

can be fitted from B decays assuming $\mathrm{SU}(3)_{\mathrm{F}}$
and used to predict corresponding B_{s} decays

mode	$\mathcal{B}(\mathrm{CDSS}) \times 10^{4} \mathcal{B}(\mathrm{BZ}) \times 10^{4}$	Exp.	mode	$\mathcal{B}(\mathrm{CDSS}) \times 10^{4} \mathcal{B}(\mathrm{BZ}) \times 10^{4}$		
$J / \psi \eta$	4.3 ± 0.2	4.2 ± 0.2	3.32 ± 1.02	$\eta_{c} \eta$	4.0 ± 0.7	3.9 ± 0.6
$J / \psi \eta^{\prime}$	4.4 ± 0.2	4.3 ± 0.2	3.1 ± 1.39	$\eta_{c} \eta^{\prime}$	4.6 ± 0.8	4.5 ± 0.7
$\psi(2 S) \eta$	2.9 ± 0.2	3.0 ± 0.2		$\eta_{c}(2 S) \eta$	1.5 ± 0.8	1.4 ± 0.7
$\psi(2 S) \eta^{\prime}$	2.4 ± 0.2	2.5 ± 0.2		$\eta_{c}(2 S) \eta^{\prime}$	1.6 ± 0.9	1.5 ± 0.8
$J / \psi \phi$	-	16.7 ± 5.7	13 ± 4	$\eta_{c} \phi$	-	15.0 ± 7.8
$\psi(2 S) \phi$	-	8.3 ± 2.7	6.8 ± 3.0			
$\chi_{c 1} \eta$	2.0 ± 0.2	2.0 ± 0.2		$\chi_{c 1} f_{0}$	1.88 ± 0.77	0.73 ± 0.30
$\chi_{c 1} \eta^{\prime}$	1.9 ± 0.2	1.8 ± 0.2		$\chi_{c 1} \phi$	-	3.3 ± 1.3
$J / \psi f_{0}$	4.7 ± 1.9	2.0 ± 0.8	<3.26	$\eta_{c} f_{0}$	4.1 ± 1.7	2.0 ± 0.9
$\psi(2 S) f_{0}$	2.3 ± 0.9	0.89 ± 0.36		$\eta_{c}(2 S) f_{0}$	0.58 ± 0.38	1.3 ± 0.8

Other modes induced by $\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c}} \mathrm{s}$ transition

Modes with $\chi_{c 0}, \chi_{c 2}$ or h_{c} in the final states have vanishing amplitude in the factorization approach We can fit from corresponding B decays the whole amplitude without assuming a factorized form for it

mode	$\mathcal{B} \times 10^{4}$	mode	\mathcal{B}	mode	$\mathcal{B} \times 10^{4}$
$\chi_{c 0} \eta$	0.85 ± 0.13	$\chi_{c 2} \eta$	<0.17	$h_{c} \eta$	<0.23
$\chi_{c 0} \eta^{\prime}$	0.87 ± 0.13	$\chi_{c 2} \eta^{\prime}$	<0.17	$h_{c} \eta^{\prime}$	<0.23
$\chi_{c 0} f_{0}$	1.15 ± 0.17	$\chi_{c 2} f_{0}$	<0.29	$h_{c} f_{0}$	<0.30
$\chi_{c 0} \phi$	1.59 ± 0.38	$\chi_{c 2} \phi$	$<0.10(0.62 \pm 0.17)$	$h_{c} \phi$	(<1.9)

Subsequent decays of $\chi_{c 0}$ have BRs of $O\left(10^{-2}\right)$:

$$
\chi_{c 0} \rightarrow \rho^{+} \pi^{-} \pi^{0}, \rho^{-} \pi^{+} \pi^{0}, \pi^{+} \pi^{-} \pi^{+} \pi^{-}
$$

In the case of $B_{s} \rightarrow \chi_{c o} \phi$ the final state consists of 6 charged hadrons \rightarrow suitable candidate to be accessed at LHCb

New Physics in non leptonic B_{s} decays

$$
\text { NP in } \mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}} \text { mixing } \quad \text { and/or } \quad \text { NP in } \mathrm{B}_{\mathrm{s}} \text { decay amplitudes }
$$

Modifies the mixing phase β_{s}
This effect is the same for all decay modes

Can affect various channels in different ways

Modes induced by the $\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c}} \mathrm{s}$ transition receive contribution from tree level + loop diagrams

There are scenarios in which new particles can contribute significantly as intermediate states in the loop the result being competitive with the SM tree level one

Example: supersymmetric scenarios with one loop gluino exchange contributing to $\mathrm{b} \rightarrow \mathrm{s}$ transition

New Physics in non leptonic B_{s} decays

General NP scenario (not specified) modifying the amplitudes $A_{\mathrm{f}}=A\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{f}\right) \quad$ and $\quad \bar{A}_{\mathrm{f}}=\mathrm{A}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{f}\right) \quad(\mathrm{f}=\mathrm{CP}$ eigenstate $)$ and $\quad \lambda_{f}=e^{-2 i \beta_{s}^{\text {eff }}}\left(\frac{\overline{\mathcal{A}}_{f}}{\mathcal{A}_{f}}\right)$
Assuming that there is a single NP amplitude

Three observables: 1) branching ratio \boldsymbol{B}
2) Mixing induced CP asymmetry

$$
S_{f}=\frac{2 \Im\left(\lambda_{f}\right)}{1+\left|\lambda_{f}\right|^{2}}
$$

3) direct CP asymmetry

$$
C_{f}=\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}}
$$

New Physics in non leptonic B_{s} decays

NP effects produce:

$$
\mathcal{B}^{\exp }=\mathcal{B}^{S M}\left[1+2 R \cos \left(\theta_{N P}\right) \cos \left(\delta_{N P}\right)+R^{2}\right]
$$

$$
S_{f}=-\eta_{f} \frac{\sin \left(2 \beta_{s}^{e f f}\right)+2 R \cos \theta_{N P} \sin \left(2 \beta_{s}^{e f f}+\delta_{N P}\right)+R^{2} \sin \left(2 \beta_{s}^{e f f}+2 \delta_{N P}\right)}{1+2 R \cos \theta_{N P} \cos \delta_{N P}+R^{2}}
$$

$$
C_{f}=-\frac{2 R \sin \theta_{N P} \sin \delta_{N P}}{1+2 R \cos \theta_{N P} \cos \delta_{N P}+R^{2}}
$$

Quantities parametrizing deviations from SM:

$$
\Sigma=\frac{\mathcal{B}^{\exp }}{\mathcal{B}^{S M}}-1
$$

$$
\tilde{S}_{f}=\frac{-\eta_{f} S_{f}-\sin \left(2 \beta_{s}^{e f f}\right)}{\cos \left(2 \beta_{s}^{e f f}\right)}
$$

$$
\theta_{N P}=\operatorname{ArcTan}\left(\frac{-C_{f}}{\tilde{S}_{f}}\right)
$$

$$
\delta_{N P}=\operatorname{ArcTan}\left[\frac{(1+\Sigma)}{\Sigma} \tilde{S}_{f}\right]
$$

$$
R=\frac{\Sigma}{2 \cos \left(\theta_{N P}\right) \cos \left(\delta_{N P}\right)}
$$

P. Colangelo, W. Wang, FDF arXiv:1009.4612

$$
\left.\delta_{N P}=\operatorname{ArcTan}\left[\frac{(1+\Sigma)}{\Sigma} \tilde{S}_{f}\right]\right] \quad \begin{aligned}
& \delta_{\mathrm{NP}} \text { can be constrained } \\
& \text { knowing } \mathrm{S}_{\mathrm{f}} \text { and } B
\end{aligned}
$$

Example in the case of $B_{s} \rightarrow \mathrm{~J} / \psi \eta$ for which the branching ratio is measured

All the three observables are required to constrain R.

If B, C_{f}, S_{f} were known for at least two modes also β_{s} could be constrained

Conclusions

- Many interesting news in B_{s} decays
- others will probably (hopefully) come soon
- modes induced by $b \rightarrow c \bar{c} s$ transition are useful to determine β_{s}
- the sum rule calculation of $B_{s} \rightarrow f_{0}$ form factors allows to state that this mode is a promising alternative to the golden mode

Non factorizable effects

Uncertainties are due to - $\mathrm{SU}(3)_{\mathrm{F}}$ accuracy

- non factorizable effects
usually relevant when the factorizable term either is absent or is strongly suppressed (loop-induced decays, CKM suppression)

Polarization fractions are useful probes of such contributions

\[

\]

The only available measurement seems to indicate that non factorizable effects negligibly affect these modes

