Flavor and $A_{FB}^{t\bar{t}}$: Flavored Colorons and Composite t''s

Alex Kagan

University of Cincinnati

Seminar at University of Mainz, April 19, 2011

- Flavor and the top-antitop forward-backward asymmetry with B. Grinstein, M. Trott, J. Zupan, arXiv:1102.3374
 - MFV, flavor octet vectors, t-channel dominance
- New strong interaction realizations with M. Trott and J. Zupan, in progress
 - composite (u', c', t') weak singlet up quarks, composite flavor octet vectors,....
 - electroweak symmetry breaking: identification with technicolor?

Flavor and the top-antitop forward-backward asymmetry

Issues for NP explanations of $A_{FB}^{t\bar{t}}$

For $M_{t\bar{t}} > 450$ GeV CDF measures:

$$A_{FB}^{t\bar{t}} = \frac{\sigma_F^{SM} + \sigma_F^{NP} - \sigma_B^{SM} - \sigma_B^{NP}}{\sigma_F^{SM} + \sigma_F^{NP} - \sigma_B^{SM} - \sigma_B^{NP}} = 0.475 \pm 0.114$$
$$\sigma_F^{t\bar{t}} = 1.9 \pm 0.5 \text{ pb}$$

SM theory predictions for $M_{t\bar{t}} > 450$ GeV:

$$A_{\rm NLO}^{t\bar{t}} = 0.088 \pm 0.013 \quad (3.4\sigma \text{ discrepancy})$$

 $\sigma_{\text{NLO+NNLL}}^{t\bar{t}} = 2.26 \pm 0.18 \text{ pb}$ Ahrens et al CDF inclusive $A_{FB}^{\bar{t}t}$ measurements: $A_{FB}^{\bar{t}t}$ (SM) = 0.058 ± 0.009

 0.417 ± 0.16 (dilepton), 0.158 ± 0.074 (lepton + jet)

Can study $\sigma_B^{NP}/\sigma^{SM}$ vs. $\sigma_F^{NP}/\sigma^{SM}$ for $M_{t\bar{t}} > 450 \text{ GeV}$ 0.4 0.2 ^{WS} ω/_{dN}^g ω $\sigma_B^{NP} < 0 \Rightarrow$ NP interferes with SM -0.4 -0.6 -1.0 -0.5 0.5 0.0 1.0 $\sigma_F^{\rm NP}/\sigma_{\rm SM}$

Therefore, s-channel explanation requires color octet vector

- $A_{FB}^{t\bar{t}} \neq 0$ requires $g_L^t \neq g_R^t$, $g_L^q \neq g_R^q \Rightarrow$ "Axigluon" or "Chiral gluon"
- **FCNC**'s are an issue, e.g., $D^0 \overline{D}^0$ mixing
- no s-channel $M_{t\bar{t}}$ bump, no excess in high $M_{t\bar{t}}$ bins, dijets \Rightarrow large $M_V \sim 2$ TeV -Susanne Westhoff's Slovenia talk
 - moderate $A_{FB} \leq 0.2$ achievable

Low mass t-channel explanations have appealing features:

- vectors, e.g., Z' and W', with masses of a few hundred GeV yield large $A_{FB}^{t\bar{t}}$, increases with $M_{t\bar{t}}$, as observed -Jung, Murayama, Pierce, Wells '10
- simultaneously, good agreement with measured spectrum at large $M_{t\bar{t}}$ -Gresham, Kim, Zurek '11; Jung, Pierce, Wells '11
 - for large $M_{t\bar{t}}$, NP t-channel top production more forward
 - CDF's acceptance decreases rapidly at large rapidity
 - smaller impact on $A_{FB}^{t\bar{t}}$ due to courser $M_{t\bar{t}}$ binning

Low mass Z', W' have some problems

- I Z': same sign top production
- W': single top production
- large Z' u t or W' d t couplings \Rightarrow FCNC's are an issue

Minimal Flavor Violation: Flavor Symmetric Models

Quark sector formally invariant under the flavor group

$$G_F = U(3)_Q \times U(3)_u \times U(3)_d$$

if Yukawas promoted to spurions, $Y'_{u,d} = V_Q Y_{u,d} V^{\dagger}_{u,d}$.

Weak scale NP models are then in MFV class if invariant under G_F .

• $Y'_{u,d}$, and possibly new flavor diagonal NP phases, are only source of FCNCs

constrains possible flavor structures, e.g., for $\bar{Q}Q$ bilinears, insertions

 $Q(Y_u^{\dagger}Y_u)^n Q$ allowed, $QY_d^{\dagger}(Y_u^{\dagger}Y_u)^n Q$ forbidden

e.g., $\bar{b}_L s_L \sim V_{tb} V_{ts}^*$

To address problems mentioned above consider models for $A_{FB}^{t\bar{t}}$ that

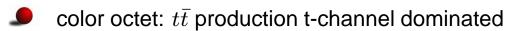
- do not contain additional breaking of the SM flavor group G_F beyond the Yukawa spurions
- \blacksquare contain new fields in non-trivial representations of G_F
- have O(1) couplings to the top and light quarks

Vectors in MFV

- Motivated by nice features of vector t-channel models
- There are 22 vector representations satisfying the MFV hypothesis (not all relevant to $A_{FB}^{t\bar{t}}$)

Case	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$SU(3)_{U_R} \times SU(3)_{D_R} \times SU(3)_{Q_L}$	Couples to
I _{s,o}	1,8	1	0	(1,1,1)	$ar{d}_R\gamma^\mud_R$
II _{s,o}	1,8	1	0	(1,1,1)	$ar{u}_R\gamma^\muu_R$
III _{s,o}	1 <mark>,</mark> 8	1	0	(1,1,1)	$ar{Q}_L\gamma^\muQ_L$
IV _{s,o}	1,8	3	0	(1,1,1)	$ar{Q}_L\gamma^\muQ_L$
V _{s,o}	1,8	1	0	(1,8,1)	$ar{d}_R\gamma^\mud_R$
VI _{s,o}	1,8	1	0	(8,1,1)	$ar{u}_R\gamma^\muu_R$
VII _{s,o}	1,8	1	-1	(3,3,1)	$ar{d}_R\gamma^\muu_R$
VIII _{s,o}	1,8	1	0	(1,1,8)	$ar{Q}_L\gamma^\muQ_L$
IX _{s,o}	1,8	3	0	(1,1,8)	$ar{Q}_L\gamma^\muQ_L$
$X_{\bar{3},6}$	<u>3</u> ,6	2	-1/6	(1,3,3)	$ar{d}_R\gamma^\muQ^c_L$
$ ext{XI}_{ar{3},6}$	<u>3</u> ,6	2	5/6	(3,1,3)	$ar{u}_R\gamma^\muQ^c_L$

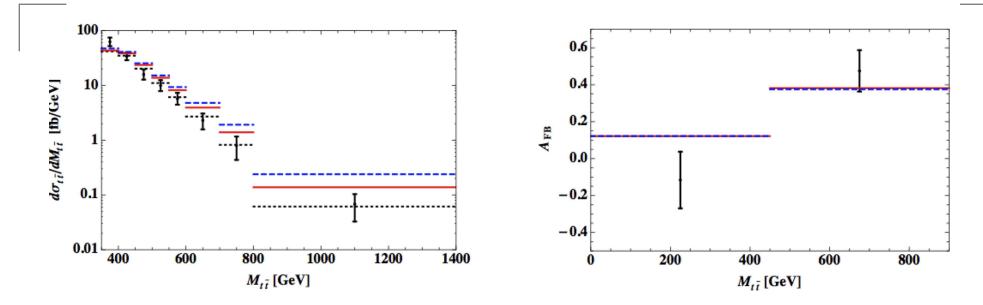
Simplest possibilities are the $SU(3)_{U_R}$ flavor octet color octet or color singlet vectors coupling only to RH up quarks


$$\mathcal{L} = \lambda \bar{u}_R \gamma^{\mu} V^{o,s}_{\mu} u_R + \text{MFV corrections}$$

• color octet:
$$V^o_\mu = V^{A,B}_\mu \mathcal{T}^A T^B$$

• color singlet:
$$V^s_\mu = V^A_\mu T^A$$

t - channel
$$(V^4_\mu - iV^5_\mu)(\bar{t}_R\gamma^\mu u_R) + \dots$$


s - channel
$$V^8_\mu(\bar{u}_R\gamma^\mu u_R + \bar{c}_R\gamma^\mu c_R - 2\bar{t}_R\gamma^\mu t_R)$$

- color singlet: s-channel larger than for color octet \Rightarrow problematic for $M_{t\bar{t}}$ bump and dijets at Tevatron
- MFV corrections split $\bar{t}t$, $\bar{t}q$, and $\bar{q}q$ couplings, preserve $SU(2)_{U_R}$ symmetry

Flavor symmetry \Rightarrow no like sign top or single top production; negligible FCNC's: $D^0 - \overline{D}^0$ mixing

$A_{FB}^{t\bar{t}}$ and $d\sigma/dM_{t\bar{t}}$ for the octet of color and flavor

 $A_{FB}^{t\bar{t}}$ and $d\sigma(t\bar{t})/dM_{t\bar{t}}$, for two different values of $(m_V, \sqrt{\lambda_{qq}\lambda_{33}}, \lambda_{q3}, \Gamma_V/m_V)$: solid red (300 GeV, 1, 1.33, 0.08); dashed blue (1200 GeV, 2.2, 4.88, 0.5). Inclusive $A_{FB}^{t\bar{t}} = 0.17$ in both cases

CDF rapidity acceptance corrections (in progress) should eliminate $M_{t\bar{t}} > 600 \text{ GeV}$ spectrum excesses for light vector example

Tevarton, LHC dijet constraints: do not require flavor symmetry breaking for light vectors; large breaking ($\lambda_{qq} < \lambda_{q3}$) for heavy vectors

Strong interaction realizations: composite t''s, flavored colorons

The set-up

- can we build models with composite flavor octet vector mesons?
- can they naturally only couple to right-handed up quarks?
- QCD provides a beautiful example of flavor octet composite vector mesons
- add asymtpotically free $SU(N)_{HC}$ "hypercolor" gauge interaction, with strong interaction scale $\Lambda_{HC} \sim 1/2$ TeV
- add $SU(2)_L$ singlet, vectorlike, $SU(3)_{U_R}$ "flavor triplet" of hypercolored quarks $(\omega_{L_i}, \omega_{R_i})$ (i = 1, 2, 3), and new hypercolored "flavor singlet" scalar S.

They transform under $SU(N)_{HC} \times SU(3)_C \times SU(2)_L \times U(1)_Y$ as

model A :
$$\omega_{L_i,R_i}(N,1,1,2/3), \quad S(\bar{N},3,1,0)$$

model B : $\omega_{L_i,R_i}(N,3,1,2/3), \quad S(N,1,1,0)$

with $\mathcal{L}_{NP} = \mathbf{h}_{ij} \, \bar{u}_{Ri} \omega_{Li} \mathcal{S} + h.c. + \mu_{\omega \, ij} \, \bar{\omega}_i \omega_j + m_s^2 |\mathcal{S}|^2$

 u_R is the usual flavor triplet of RH up quarks (u_R, c_R, t_R)

$$\mathcal{L}_{NP} = \mathbf{h}_{ij} \, \bar{u}_{Ri} \, \omega_{Li} \, \mathcal{S} + h.c. + \mu_{\omega \, ij} \, \bar{\omega}_i \, \omega_j + m_s^2 |\mathcal{S}|^2$$

imposing MFV
$$\Rightarrow$$
 $\mathbf{h}_{ij} = h \, \delta_{ij}, \quad \mu_{\omega \, ij} = \mu_{\omega} \, \delta_{ij}$

MFV corrections
$$\Rightarrow$$
 h = diag (h_1, h_1, h_3) , $\mu_{\omega} = diag(\mu_1, \mu_1, \mu_3)$

hypercolor sector only couples to the right-handed up quarks

- due to choice of representations for ω , S (hypercharge assignments)
- Therefore, $SU(3)_{U_R}$ symmetry of \mathcal{L}_{NP} could be an accidental consequence of an $SU(3)_H$ horizontal gauge symmetry, under which all quarks are triplets
- Spontaneous breaking of $SU(3)_H$ (flavons) in the UV could generate the quark mass and mixing hierarchies via a Frogatt-Nielsen type mechanism
- At the weak scale could have the SM (or MSSM) + new hypercolor sector \Rightarrow MFV
- Flavor structure of the resonances would hint at horizontal symmetry solution to the quark mass hierarchy problem!

variation on \mathcal{L}_{NP} : add gauge singlet scalar, \mathcal{N} ,

$$\mathcal{L}_{NP} = \mathbf{h} \, \bar{u}_R \, \omega_L \, \mathcal{S} + h.c. + \eta \, \mathcal{N} \, \bar{\omega} \omega + \mu_s \, \mathcal{N} \, \mathcal{S}^* \, \mathcal{S} + m_s^2 \, |\mathcal{S}|^2 + m_N^2 |\mathcal{N}|^2 + \dots$$

• dynamically generate ω current masses via $SU(N)_{HC}$ condensates,

$$\langle \bar{\omega}\omega \rangle, \ \langle \mathcal{S}^*\mathcal{S} \rangle \neq 0 \Rightarrow \langle \mathcal{N} \rangle \neq 0 \Rightarrow \mu_\omega \neq 0$$

 $SU(3)_c$ breaking alignment of condensates can be avoided via the new terms

$$\eta \,\mathcal{N}\,\bar{\omega}\omega + +\mu_s \,\mathcal{N}\mathcal{S}^*\mathcal{S}$$

could "supersymmetrize" in order to protect scalar masses; or could imagine that the scalars are themselves composites

Hypercolor resonances and $A_{FB}^{t\bar{t}}$

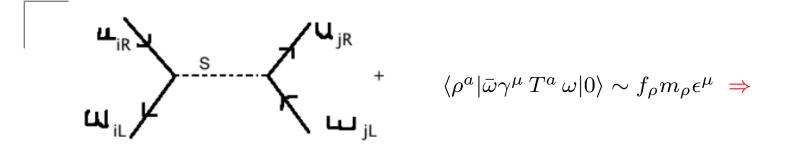
consider model A: $\omega_{L_i}, \omega_{R_i}(N, 1, 1, 2/3), \quad S(\bar{N}, 3, 1, 0)$

- the lowest vector meson flavor 8+1 "nonets" (a=1,...,9): $\rho^a_{HC}[\bar{\omega}\omega] \text{ vectors; } a^a_{1 HC}[\bar{\omega}\omega] \text{ axial-vectors}$
 - $\langle \bar{\omega}\omega
 angle
 eq 0$ breaks global chiral symmetry

 $SU(3)_L \times SU(3)_R \to SU(3)_V$

 \Rightarrow flavor octet of pions π^a_{HC} , heavier η'_{HC}

mass scales: scale up from QCD


$$\frac{f_{\pi}^{HC}}{f_{\pi}} \sim \frac{f_{\rho}^{HC}}{f_{\rho}} \sim \frac{m_{\rho_{HC}}}{m_{\rho}} \sqrt{\frac{N_{HC}}{3}}, \qquad \frac{f_{\rho}^{HC}}{m_{\rho}^{HC}} \approx 0.2 \sqrt{\frac{N_{HC}}{3}}$$

Motivated by vector flavor/color octet analysis of $A_{FB}^{t\bar{t}}$

•
$$m_{\rho}^{HC} \sim 300 - 500 \text{ GeV} \Rightarrow f_{\pi}^{HC} \sim 35 - 60 \text{ GeV} (N_{HC} = 3)$$

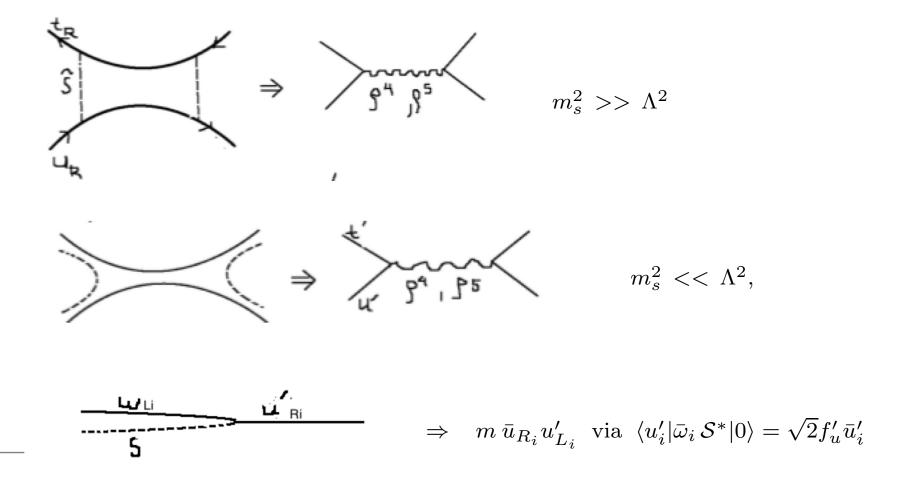
•
$$\Lambda_{HC}^{\chi SB} \sim 4\pi f_{\pi}^{HC} \sim 450 - 750 \text{ GeV}$$

vector meson - quark couplings

ho, a_1 couplings to up quarks: $\lambda^V
ho^a_\mu \, \bar{u} \, T^a \, \gamma^\mu \, u \, + \, \lambda^A \, a_1^a \, \bar{u} \, T^a \, \gamma^\mu \, \gamma_5 \, u \, ,$ with

$$\lambda^V \sim h^2 \frac{f_\rho m_\rho}{m_s^2}, \quad \lambda^A \sim h^2 \frac{f_{a_1} m_{a_1}}{m_s^2} \quad \text{for } m_s >> \Lambda$$

• observed $A_{FB}^{t\bar{t}} \Rightarrow \rho - u - t$ coupling $\lambda = O(1)$


• h perturbative $\Rightarrow m_S^2 << \Lambda^2$ Naive dimensional analysis (NDA) implies

$$\lambda \sim h^2 \frac{f_{\rho}}{\Lambda}$$
 or $h = O(\text{few})$

 $m_s \ll \Lambda \Rightarrow$ modified resonance picture, includes $SU(3)_{U_R}$ flavor triplet of weak singlet vectorlike up quarks, with masses of $O(m_\rho)$ or O(1/2 TeV)

$$u'[\mathcal{S}\,\omega_1], \quad c'[\mathcal{S}\,\omega_2], \quad t'[\mathcal{S}\,\omega_3]$$

 $t\bar{t}$ production via exchange of ho^a , a_1^a and large $u'_{R_i} - u_{R_i}$ mixing

$\rho^a - u_i - u_j$ couplings via exchange of composite u''s

$$\langle u_i' | \bar{\omega}_i \, \mathcal{S}^* | 0 \rangle = \sqrt{2} f_{u_i} \bar{u}_i', \text{ with } f_u' \sim f_\rho \Rightarrow$$

$$|u_{R_{i}(L_{i})}\rangle^{\text{phys}} = \cos\theta_{R_{i}(L_{i})}|u_{R_{i}(L_{i})}\rangle - \sin\theta_{R_{i}(L_{i})}|u_{R_{i}(L_{i})}'\rangle$$

$$\sin \theta_{R_i} \approx \sqrt{2} h_i \frac{f'_{u_i}}{M_{u'_i}}, \quad \sin \theta_{L_i} \approx \sqrt{2} h_i \frac{f'_{u_i} m_{u_i}}{M_{u'_i}^2}$$

 m_{u_i} are ordinary up quark masses, $M_{u_i^\prime}$ are composite up quark masses

using Vector Meson Dominance (VMD) to estimate the $\rho^a - u'_i - u'_j$ and $a^a_1 - u'_i - u'_j$ couplings

$$g_V \rho^a_\mu \ \bar{u}' T^a \gamma^\mu u' + g_A a^a_{1\,\mu} \ \bar{u}' T^a \gamma^\mu \gamma_5 u' \Rightarrow g_V \approx \frac{m_\rho}{\sqrt{3} f_\rho}, \ g_A \approx \frac{m_{a_1}}{\sqrt{3} f_{a_1}}$$

 \checkmark $\rho^a - u_i - u_j$ and $a_1^a - u_i - u_j$ couplings follow from u' - u mixing ($c_v \sim 1$):

$$\lambda_{ij}^{V_a} = c_{v_a} h_i h_j \frac{m_{\rho^a}}{f_{\rho^a}} \frac{f'_{u_i} f'_{u_j}}{M_{u'_i} M_{u'_j}} = \mathcal{O}\left(h^2 \frac{f_{\rho}}{m_{\rho}}\right) \sim 0.2 h^2, \qquad \frac{\lambda^A}{\lambda^V} \approx \frac{m_{a_1} f_{\rho}}{m_{\rho} f_{\rho}}$$

 $\lambda^V \approx 1 \implies h = O(\text{few})$, as expected from NDA

$A_{FB}^{t\bar{t}}$ and $d\sigma/dM_{t\bar{t}}$ from the flavor nonets ρ^a , a_1^a

for simplicity, consider $SU(3)_{U_R}$ limit (rather than $SU(2) \times U(1)$):

• degenerate nonets $m_{
ho^a}=m_{
ho}, \ m_{a_1^a}=m_{a_1}$

- degenerate couplings for λ^V and λ^A
- in $SU(3)_{U_R}$ limit no s-channel contribution: no " $\omega \phi$ " mixing
- our results do not yet include exchange of the *P*-wave vector meson bound states of the scalars, $V^{\mu} [S^*S]$ (work in progress)
 - a flavor singlet color octet, and a flavor singlet color singlet
 - sequence expected to be very broad, e.g. $\Gamma/M \sim 50\%$, due to $V \rightarrow \bar{u}'_i u_i$
- analysis of Model B is also in progress: exchange of
 - vector meson flavor nonets which are color octets $\rho^{a,b}$, and color singlets ρ^a , and their axial vector partners
 - a very broad P-wave color and flavor singlet vector meson bound state

Model A example: exchange of ρ^a flavor nonet vector mesons ($m_{\rho} = 300$ GeV; $m_{a_1} = 450$ GeV; $\lambda^V = 1.04$; $\lambda^A = \lambda^V m_{a_1}/m_{\rho}$, $\Gamma_{\rho}/m_{\rho} = \Gamma_{a_1}/m_{a_1} = 10\%$):

M_{$\bar{t}t$} spectrum:

• $A_{FB}^{\bar{t}t}(M > 450 \text{ GeV}) = 0.40, \quad A_{FB}^{\bar{t}t}(M < 450 \text{ GeV}) = 0.02$ $A_{FB}^{\bar{t}t}(\text{inclusive}) = 0.21$

expect the CDF rapidity acceptance correction to bring the true excess at large $M_{\bar{t}t}$ into agreement with the measured spectrum

checked that Tevatron and LHC dijet contsraints satisfied

On the composite u''s

The new composite quarks can be quite broad! Due to decays to ordinary RH up quarks and HC pions, π^a , e.g.,

$$u_i' \to \pi^a + t$$

using NDA for the couplings of the π^a to the u''s

$$O(4\pi) \, \bar{u}'_{R_i} T^b_{ij} \pi^b u'_{Lj} \ \Rightarrow \ \Gamma_{u'} / M_{u'} = \mathcal{O}(10\%),$$

compared with $\approx 1\%$ for the top quark

- quark masses $\sim 1/2$ TeV
- detection at LHC via $u'_i \rightarrow t + \pi^a$
 - Model A: the π^a are color singlets, decay to light quarks $\pi^a
 ightarrow ar{u}_i \, u_j$
 - **Solution** Model B: the π^a are color octets, flavor singlets also decay to two gluons

Production mechanism:

- $\bar{u}'_i u_i$: via ρ^a , a^a_1 exchange

Electroweak Symmetry Breaking

- can identify the new strong interaction with technicolor (TC): $SU(N)_{HC} = SU(N)_{TC}$
- the low mass scale $m_{\rho}^{HC} \sim 300 500$ GeV favored by $A_{FB}^{t\bar{t}}$, or the correspondingly low hypercolor decay constant $f_{\pi}^{HC} \sim 30 50$ GeV, is suggestive of a low scale technicolor scenario Eichten, Lane
- Example: Bosonic Technicolor Simmons (non-susy); Dine, A.K., Samuel (supersymmetric)
 - supersymmetry stabilizes the masses of fundamental scalars, e.g., higgs doublets, or the scalars S introduced earlier
 - Technicolor triggers electroweak symmetry breaking, induces VEV's for fundamental MSSM Higgs doublets, H^u, H^d via Yukawas to SU(2)_L breaking technifermion condensates (techniscalar condensates also possible)

$$L = h_u H^u T U + h_d H^d T D + \dots$$

$$\begin{split} \langle TU\rangle &= \langle TD\rangle \approx 4\pi F_{\mathrm{TC}}^3 \Rightarrow \langle H^u\rangle \approx h_u \langle TU\rangle /m_{H^u}^2, \ \langle H^d\rangle \approx h_d \langle TD\rangle /m_{H^d}^2 \end{split}$$
 Higgs masses $m_{H^u}^2, m_{H^d}^2 > 0!$

Bosonic Technicolor continued:

✓ ordinary fermions receive masses via MSSM Yukawas to the Higgs VEVs: $y^t \langle H^u \rangle \, \bar{t}t + \dots$

W, Z receive masses both from technicolor condensates, HIggs VEV's

$$v^{2} = (246 \text{ GeV})^{2} = F_{\text{TC}}^{2} + \langle H^{u} \rangle^{2} + \langle H^{d} \rangle^{2}$$

- require perturbative yukawa couplings ($y^t, h_u \leq 1$), and a light higgs doublet (precision electroweak data)
 - Top mass favors a small TC pion decay constant, e.g., $F_{\pi}^{TC} \sim 30-70$ GeV, and $\langle H^u \rangle \approx v$
 - no susy little hierarchy problem
- low TC scale fits nicely with strong interaction scale for $A_{FB}^{t\bar{t}}$
- bulk of W, Z masses come from Higgs VEV's
- models combining TC and a strong interaction explanation for $A_{FB}^{t\bar{t}}$ are currently under investigation, including alternative realizations in which quark masses are generated via mixing with composite quarks, with a direct connection to $A_{FB}^{t\bar{t}}$