Flavor and $A_{FB}^{t\bar{t}}$: Flavored Colorons and Composite t''s

Alex Kagan

University of Cincinnati

- Flavor and the top-antitop forward-backward asymmetry with B. Grinstein, M. Trott, J. Zupan, arXiv:1102.3374
 - MFV, flavor octet vectors, t-channel dominance
- New strong interaction realizations with M. Trott and J. Zupan, in progress
 - composite (u', c', t') weak singlet up quarks, composite flavor octet vectors,....
 - identification with technicolor: electroweak symmetry breaking

Flavor and the top-antitop forward-backward asymmetry

Issues for NP explanations of $A_{FB}^{t\bar{t}}$

For $M_{t\bar{t}} > 450$ GeV CDF measures:

$$A_{FB}^{t\bar{t}} = \frac{\sigma_F^{SM} + \sigma_F^{NP} - \sigma_B^{SM} - \sigma_B^{NP}}{\sigma_F^{SM} + \sigma_F^{NP} - \sigma_B^{SM} - \sigma_B^{NP}} = 0.475 \pm 0.114$$
$$\sigma_F^{t\bar{t}} = 1.9 \pm 0.5 \text{ pb}$$

SM theory predictions for $M_{t\bar{t}} > 450$ GeV:

$$A_{\rm NLO}^{tt} = 0.088 \pm 0.013 \quad (3.4\sigma \text{ discrepancy})$$

 $\sigma_{\text{NLO+NNLL}}^{t\bar{t}} = 2.26 \pm 0.18 \text{ pb}$ Ahrens et al

Can study

$$\sigma_B^{NP}/\sigma^{SM}$$
 vs. $\sigma_F^{NP}/\sigma^{SM}$ for $M_{t\bar{t}} > 450 \text{ GeV}$

Therefore, s-channel explanation requires color octet vector

- $A_{FB}^{t\bar{t}} \neq 0$ requires $g_L^t \neq g_R^t$, $g_L^q \neq g_R^q \Rightarrow$ "Axigluon" or "Chiral gluon"
- FCNC's are an issue, e.g., $D^0 ar{D}^0$ mixing
 - no s-channel $M_{t\bar{t}}$ bump, no excess in high $M_{t\bar{t}}$ bins, dijets \Rightarrow large $M_V \sim 2$ TeV -see Susanne Westhoff's talk
 - moderate $A_{FB} \lesssim 0.2$ achievable

Low mass t-channel explanations have appealing features:

- vectors, e.g., Z' and W', with masses of a few hundred GeV yield large $A_{FB}^{t\bar{t}}$, increases with $M_{t\bar{t}}$, as observed -Jung, Murayama, Pierce, Wells '10
- simultaneously, good agreement with measured spectrum at large $M_{t\bar{t}}$ -Gresham, Kim, Zurek '11; Jung, Pierce, Wells '11
 - for large $M_{t\bar{t}}$, NP t-channel top production more forward
 - CDF's acceptance decreases rapidly at large rapidity
 - smaller impact on $A_{FB}^{t\bar{t}}$ due to courser $M_{t\bar{t}}$ binning

Low mass Z', W' have some problems

- I Z': same sign top production
- W': single top production
- large Z' u t or W' d t couplings \Rightarrow FCNC's are an issue

Minimal Flavor Violation: Flavor Symmetric Models

Quark sector formally invariant under the flavor group

 $G_F = U(3)_Q \times U(3)_u \times U(3)_d$

if Yukawas promoted to spurions, $Y'_{u,d} = V_Q Y_{u,d} V^{\dagger}_{u,d}$.

To address problems mentioned above consider models for $A_{FB}^{t\bar{t}}$

- lacksquare that do not contain additional breaking of the SM flavor group G_F
- new fields can be in non-trivial representations of G_F
- they have O(1) couplings to the top and light quarks

Vectors in MFV

- Motivated by nice features of vector t-channel models
- There are 22 vector representations satisfying the MFV hypothesis (not all relevant to $A_{FB}^{t\bar{t}}$)

Case	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$SU(3)_{U_R} \times SU(3)_{D_R} \times SU(3)_{Q_L}$	Couples to
I _{s,o}	1,8	1	0	(1,1,1)	$ar{d}_R\gamma^\mud_R$
II _{s,o}	1,8	1	0	(1,1,1)	$ar{u}_R\gamma^\muu_R$
III _{s,o}	1,8	1	0	(1,1,1)	$ar{Q}_L\gamma^\muQ_L$
IV _{s,o}	1, <mark>8</mark>	3	0	(1,1,1)	$ar{Q}_L\gamma^\muQ_L$
V _{s,o}	1, <mark>8</mark>	1	0	(1,8,1)	$ar{d}_R\gamma^\mud_R$
VI _{s,o}	1,8	1	0	(8,1,1)	$ar{u}_R\gamma^\muu_R$
VII _{s,o}	1,8	1	-1	(3,3,1)	$ar{d}_R\gamma^\muu_R$
VIII _{s,o}	1,8	1	0	(1,1,8)	$ar{Q}_L\gamma^\muQ_L$
IX _{s,o}	1 <mark>,</mark> 8	3	0	(1,1,8)	$ar{Q}_L\gamma^\muQ_L$
X _{3,6}	<u>3</u> ,6	2	-1/6	(1,3,3)	$ar{d}_R\gamma^\muQ^c_L$
XI _{3,6}	<u>3</u> ,6	2	5/6	(3,1,3)	$ar{u}_R\gamma^\muQ^c_L$

Simplest possibilities are the $SU(3)_{U_R}$ flavor octet color octet or color singlet vectors coupling only to RH up quarks

$$\mathcal{L} = \lambda \bar{u}_R \gamma^{\mu} V^{o,s}_{\mu} u_R + \text{MFV corrections}$$

• color octet:
$$V^o_\mu = V^{A,B}_\mu \mathcal{T}^A T^B$$

• color singlet:
$$V^s_\mu = V^A_\mu T^A$$

t - channel
$$(V^4_\mu - iV^5_\mu)(\bar{t}_R\gamma^\mu u_R) + \dots$$

s - channel
$$V^8_\mu(\bar{u}_R\gamma^\mu u_R + \bar{c}_R\gamma^\mu c_R - 2\bar{t}_R\gamma^\mu t_R)$$

color octet: $t\bar{t}$ production t-channel dominated

- color singlet: s-channel larger than for color octet \Rightarrow problematic for $M_{t\bar{t}}$ bump and dijets at Tevatron
- MFV corrections split $\bar{t}t$, $\bar{t}q$, and $\bar{q}q$ couplings, preserve $SU(2)_{U_R}$ symmetry

Flavor symmetry \Rightarrow no like sign top or single top production; negligible FCNC's: $D^0 - \overline{D}^0$ mixing

$A_{FB}^{t\bar{t}}$ and $d\sigma/dM_{t\bar{t}}$ for the octet of color and flavor

 $A_{FB}^{t\bar{t}}$ and $d\sigma(t\bar{t})/dM_{t\bar{t}}$, for two different values of $(m_V, \sqrt{\lambda_{qq}\lambda_{33}}, \lambda_{q3}, \Gamma_V/m_V)$: solid red (300 GeV, 1, 1.33, 0.08); dashed blue (1200 GeV, 2.2, 4.88, 0.5), that give approximately the same $A_{FB}^{t\bar{t}}$ in the high mass bin

- CDF rapidity acceptance corrections (in progress) should eliminate $M_{t\bar{t}} > 600 \text{ GeV}$ spectrum excesses for light vector example
- Dijet constraints: require moderate flavor symmetry breaking for light vectors; large breaking for heavy vectors

Strong interaction realizations: composite t''s, flavored colorons

The set-up

can we build models with composite flavor octet vector mesons which naturally only couple to right-handed up quarks?

already have a very nice example of flavor octet composite vector mesons in QCD

- add a new asymtpotically free $SU(N)_{HC}$ "hypercolor" gauge interaction, with strong interaction scale $\Lambda_{HC} \sim 1/2$ TeV
- add a new weak singlet vectorlike "flavor triplet" of left-handed and right-handed hypercolor quarks, $(\omega_{L_i}, \omega_{R_i})$ (i = 1, 2, 3), and a new hypercolored scalar, \tilde{s} , transforming under $SU(N)_{HC} \times SU(3)_C \times SU(2)_L \times U(1)_Y$ as

model A : $\omega_{L_i,R_i}(N,1,1,2/3), \quad \tilde{s}(\bar{N},3,1,0)$

model B : $\omega_{L_i,R_i}(N,3,1,2/3), \quad \tilde{s}(N,1,1,0)$

with new Lagrangian

$$\mathcal{L}_{NP} = \mathbf{h}_{ij} \, \bar{u}_{Ri} \omega_{Li} \tilde{s} + h.c. + \mu_{ij} \, \bar{\omega}_i \omega_j + m_s^2 |\tilde{s}|^2$$

 u_{Ri} are the ordinary right handed quarks (u_R, c_R, t_R)

could "supersymmetrize" in order to protect the scalar masses, or could imagine that scalars are composites of some yet higher energy interaction,.....

– p. 1

$$\mathcal{L}_{NP} = \mathbf{h}_{ij} \, \bar{u}_{Ri} \omega_{Li} \tilde{s} + h.c. + \mu_{ij} \, \bar{\omega}_i \omega_j + m_s^2 |\tilde{s}|^2$$

- **s** consequence of choice of representations for ω , \tilde{s} (hypercharge assignments)
- $SU(3)_{U_R}$ symmetry of \mathcal{L}_{NP} could be an accidental consequence of $SU(3)_H$ horizontal gauge symmetry at some large UV scale responsible for generating the quark mass and mixing hierarchies via a Frogatt-Nielsen type mechanism

consider model A: $\omega_{L_i,R_i}(N, 1, 1, 2/3), \quad \tilde{s}(\bar{N}, 3, 1, 0)$

vectors $\rho^{\mathrm{HC}}[\bar{\omega}\omega]$, $a_1[\bar{\omega}\omega]$ are flavor "nonets" 8 + 1

• vector P-wave bound state of the scalars $[\tilde{s}^*\tilde{s}]$, flavor singlet

 $\langle \bar{\omega}\omega \rangle \neq 0$ breaks global chiral symmetry

 $SU(3)_L \times SU(3)_R \to SU(3)_V$

 \Rightarrow flavor octet of hypercolor pions π^{HC} , heavier η'_{HC}

mass scales: scale up from QCD

$$\frac{f_{\pi}^{HC}}{f_{\pi}} \sim \frac{f_{\rho}^{HC}}{f_{\rho}} \sim \frac{m_{\rho_{HC}}}{m_{\rho}} \sqrt{\frac{N_{HC}}{3}}$$

Motivated by vector flavor/color octet analysis of $A_{FB}^{t\bar{t}}$

•
$$m_{\rho}^{HC} \sim 300 - 500 \text{ GeV} \implies f_{\pi}^{HC} \sim 30 - 60 \text{ GeV} (N_{HC} = 3)$$

•
$$\Lambda_{\chi SB} \sim 4\pi f_\pi^{HC} \sim 400 - 700 \text{ GeV}$$

 $A_{FB}^{t\bar{t}} \Rightarrow O(1) \ \rho - \bar{t} - t \text{ coupling } \lambda$

perturbative Yukawa couplings h require scalar $m_{\tilde{s}} < \Lambda_{HC}$. Naive dimensional analysis (NDA) implies

$$\lambda \sim h^2 \frac{f_{\rho}}{\Lambda_{HC}}$$

or h = O(few)

$$u'[\tilde{s}\omega_1], \quad c'[\tilde{s}\omega_2], \quad t'[\tilde{s}\omega_3]$$

with masses of $O(m_{
ho}^{
m HC})$ or $O(1/2~{
m TeV})$

$$\langle u_{R_i} | \bar{\omega}_{R_i} \tilde{s}^* | 0 \rangle \sim f_U \bar{u}_{R_i}$$
 with $f_U \sim f_{\rho}^{\text{HC}}$

fill $t\bar{t}$ production via exchange of ρ^a , a_1^a and large mixing of the composite u'_{R_i} 's with the ordinary u_{R_i}

The new composite quarks can be quite broad! via decays to ordinary RH up quarks and HC pions, π^a , e.g.,

$$u_i' \to \pi^a + t$$

using NDA for the couplings of the π^a to the u''s

$$O(4\pi)\,\bar{u}_{R_i}'T_{ij}^b\pi^b u_{Lj}' \Rightarrow$$

$$\Gamma_{u'}/M_{u'} \sim 10 - 30\%$$

is possible, compared with $\approx 1\%$ for the top quark

$$u'_i \to t + \pi^a$$

• Model A: the π^a are stable, color neutral

• Model B: the π^a are color octets, decay to two jets $\pi^a \rightarrow gg$