

Portorož 2011 The Role of Heavy Fermions in Fundamental Physics April 11 - 14 2011, Portorož, Slovenia

Heavy Fermion Physics at Super Flavour Factories

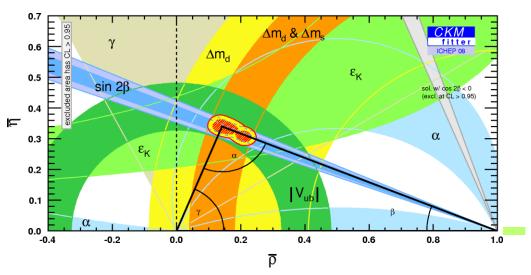
Peter Križan

University of Ljubljana and J. Stefan Institute

"Jožef Stefan" Institute

Contents

- Physics case for a Super B factory
- •SuperKEKB/Belle-II@KEK and SuperB@Italy
- Accellerators
- Detectors

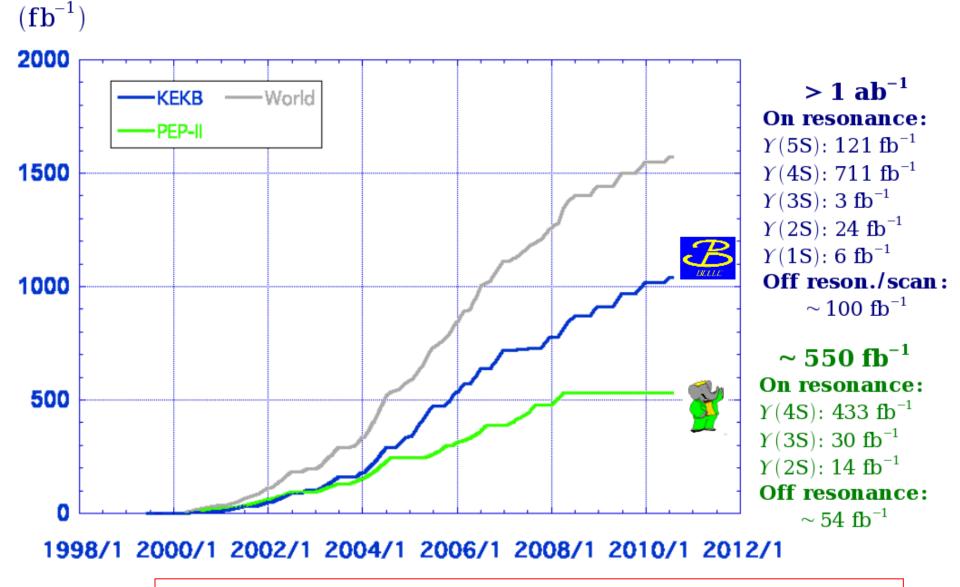

- •Status and prospects of the projects
- •Tau/charm factories

B factories: CP violation in the B system

CP violation in B system: from the discovery (2001) to a precision measurement (2006)

 $sin2\phi_1/sin2\beta$ from b \rightarrow ccs

World average 2008: $sin2\phi_1 = 0.681 \pm 0.025$



Constraints from measurements of angles and sides of the unitarity triangle → Remarkable agreement

B factories: a success story

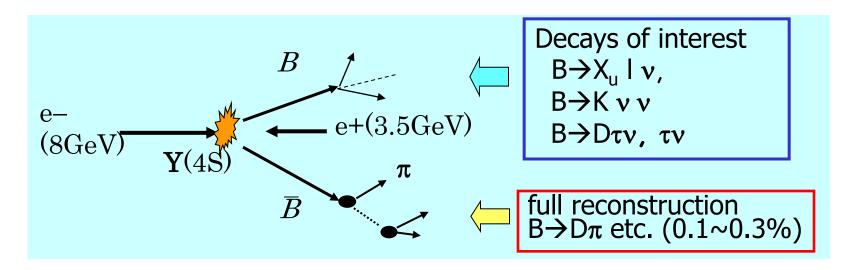
- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau \nu$, $D \tau \nu$)
- $b \rightarrow s$ transitions: probe for new sources of CPV and constraints from the $b \rightarrow s_{\gamma}$ branching fraction
- Forward-backward asymmetry (A_{FB}) in $b \rightarrow sl^+l^-$ has become a powerfull tool to search for physics beyond SM.
- Observation of D mixing
- Searches for rare τ decays
- Observation of new hadrons

Luminosity at B factories

Fantastic performance much beyond design values!

What next?

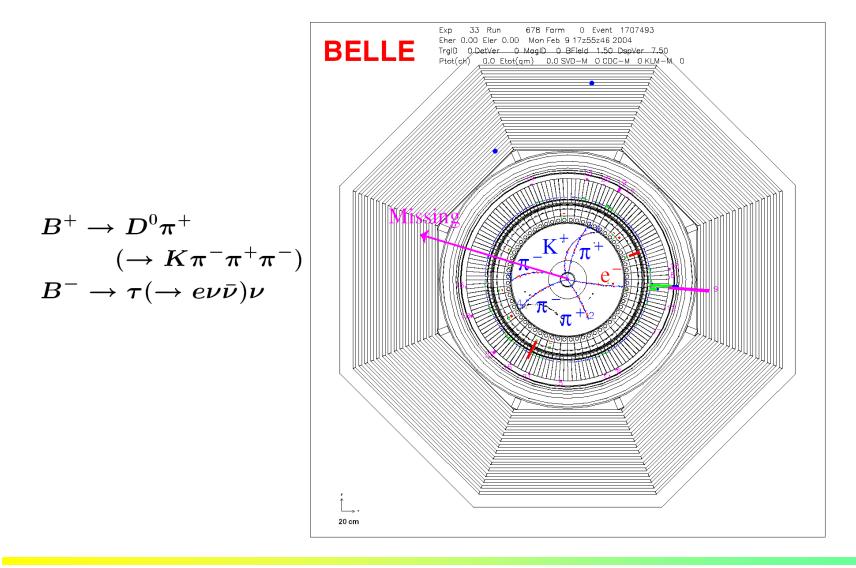
B factories \rightarrow is SM with CKM right?


Next generation: Super B factories \rightarrow in which way is the SM wrong?

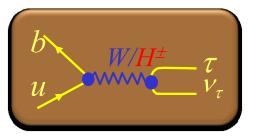
→ Need much more data (two orders!) because the SM worked so well until now → Super B factory

However: it will be a different world in four years, there will be serious competition from LHCb and BESIII

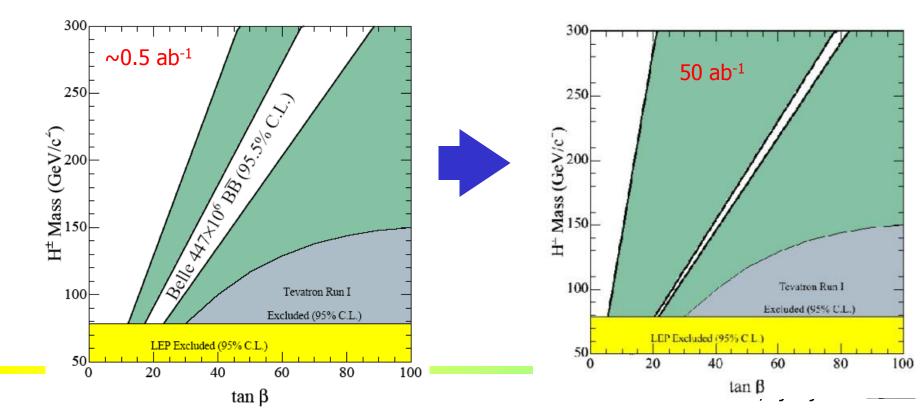
Still, e⁺e⁻ machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more Power of e⁺e⁻, example: Full Reconstruction Method


- Fully reconstruct one of the B's to
 - Tag B flavor/charge
 - Determine B momentum
 - Exclude decay products of one B from further analysis

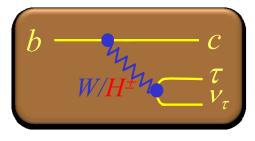
→ Offline B meson beam!


Powerful tool for B decays with neutrinos

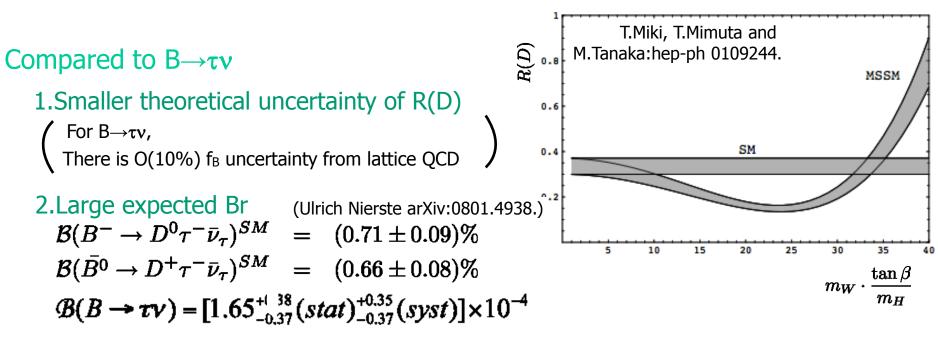
Event candidate $B^{-} \rightarrow \tau^{-} \nu_{\tau}$


Peter Križan, Ljubljana

Charged Higgs limits from $B^- \rightarrow \tau^- \nu_{\tau}$

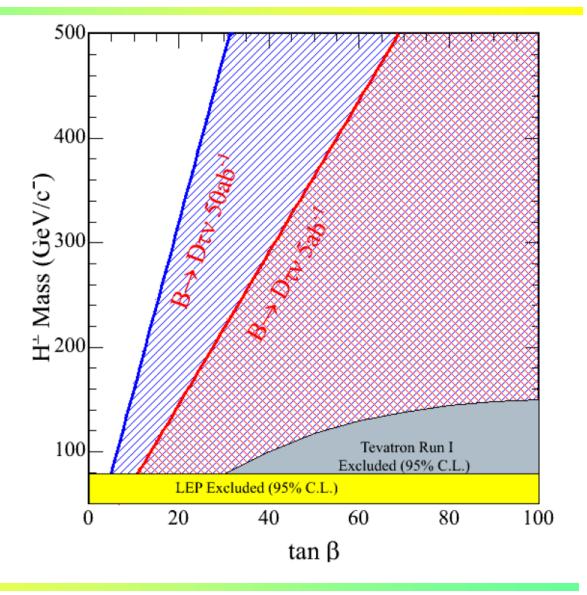

$$r_{H} = \frac{BF (B \to \tau v)}{BF (B \to \tau v)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2} \beta\right)^{2}$$

\rightarrow limit on charged Higgs mass vs. tan β


$$B \rightarrow D^{(*)} \tau v$$

Semileptonic decay sensitive to charged Higgs

Ratio of τ to μ,e could be reduced/enhanced significantly


$$R(D) \equiv \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to D\ell\nu)}$$

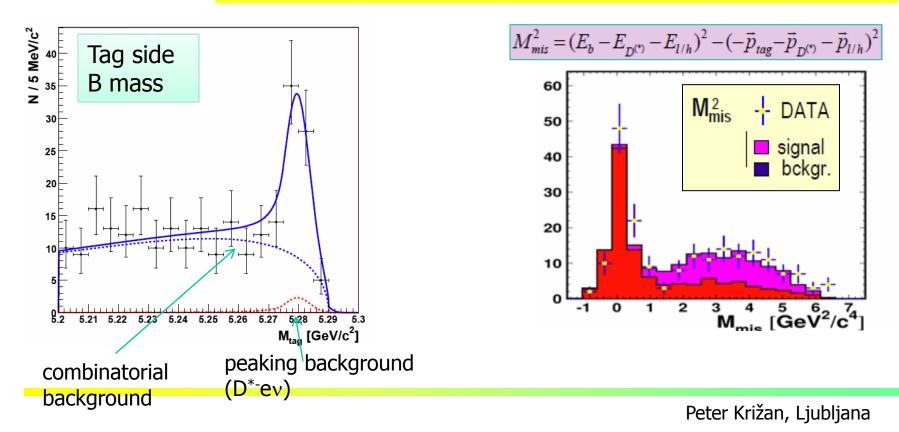
3. Differential distributions can be used to discriminate W⁺ and H⁺ 4. Sensitive to different vertex $B \rightarrow \tau v$: H-b-u, $B \rightarrow D\tau v$: H-b-c (LHC experiments sensitive to H-b-t)

$B \rightarrow D\tau v$

Exclusion plots for tanβ and H⁺ mass for 5ab⁻¹ and 50ab⁻¹

Peter Križan, Ljubljana

$B \rightarrow D^* \tau v - similar constraints on H^+$

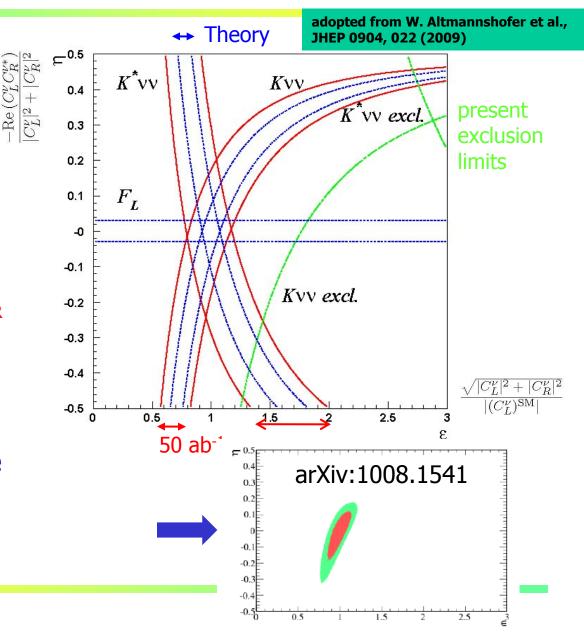

[PRL 99, 191807 (2007)]

FIRST OBSERVATION - 2007

 $BF(B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}) = (\mathbf{2.02}^{+0.40}_{-0.37} (stat) \pm 0.37 (syst)) \times \mathbf{10}^{-2}$

535M BB

SIGNAL YIELD $N_s = 60 + 12 - 11 - 6.7\sigma$ (5.2 σ with syst.)


 $B \rightarrow K^{(*)}vv$

 $\begin{array}{l} B \to K_{VV}, \ \mathcal{B} \sim 4.10^{-6} \\ B \to K^* vv, \ \mathcal{B} \sim 6.8.10^{-6} \end{array}$

SM: penguin+box

Look for departure from the expected value \rightarrow information on couplings C_R^v and C_L^v compared to $(C_L^v)^{SM}$

Again: fully reconstruct one of the B mesons, look for signal (+nothing else) in the rest of the event.

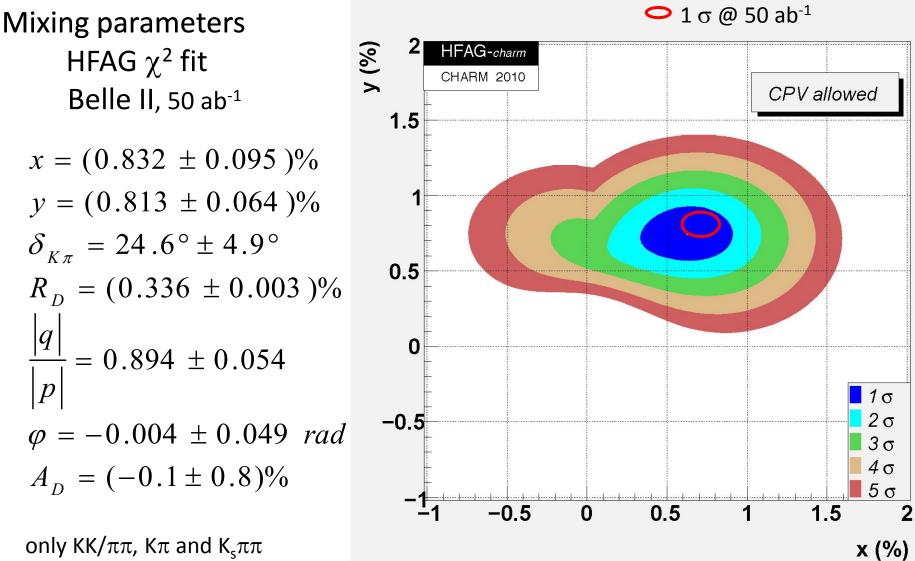
arXiv:1002.5012

not possible @ LHCb

CP violation in $B \rightarrow K_S \pi^0 \gamma$

CP violation in $B \rightarrow K_S \pi^0 \gamma$ decays: Search for right-handed currents

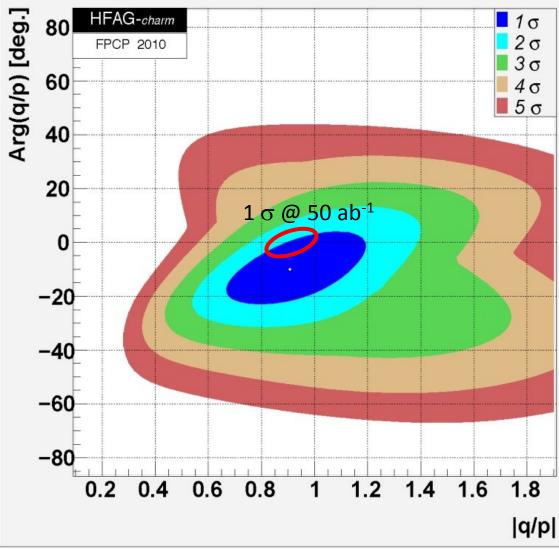
 $B \rightarrow K^* \gamma, \mathcal{B} \sim 4.0 \cdot 10^{-5}$


 $\delta S \sim 0.2$ (present) $\rightarrow \sim a$ few % at 50 ab^{-1}

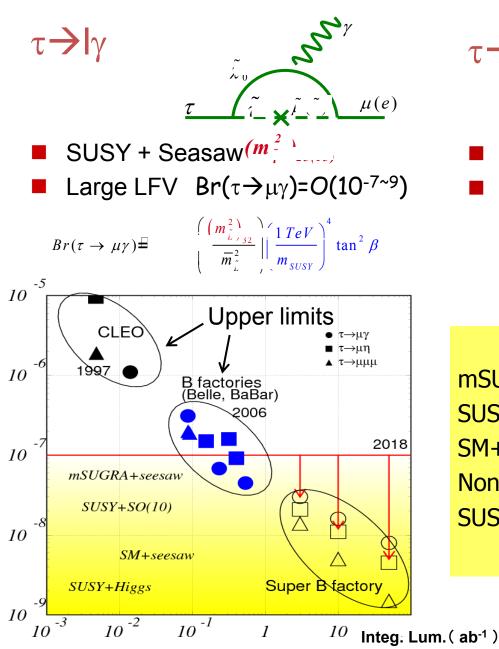
not possible @ LHCb

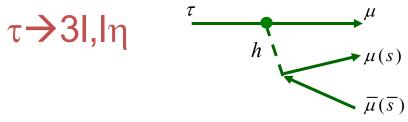
Peter Križan, Ljubljana

Charm mixing: expected sensitivities


projected sensitivities included

Charm: expected sensitivities


CPV parameters


Belle II, 50 ab⁻¹ $x = (0.832 \pm 0.095)\%$ $y = (0.813 \pm 0.064)\%$ $\delta_{K\pi} = 24.6^{\circ} \pm 4.9^{\circ}$ $R_{\rm D} = (0.336 \pm 0.003)\%$ $\frac{|q|}{1} = 0.894 \pm 0.054$ *p* $\varphi = -0.004 \pm 0.049 \ rad$ $A_{D} = (-0.1 \pm 0.8)\%$

only KK/ $\pi\pi$, K π and K_s $\pi\pi$ projected sensitivities included

τ physics: LFV and New Physics

- Neutral Higgs mediated decay.
- Important when Msusy >> EW scale. $Br(\tau \rightarrow 3\mu) =$

$$4 \times 10^{-7} \times \left(\frac{\left(m_{\tilde{L}^{\prime}}^{2}\right)}{\overline{m}_{\tilde{L}}^{2}}\right) \left(\frac{\tan\beta}{60}\right)^{6} \left(\frac{100 \, GeV}{m_{A}}\right)^{4}$$

model	Br(τ→μγ)	Br(τ→Ⅲ)	
mSUGRA+seesaw	10 -7	10 -9	
SUSY+SO(10)	10-8 10-1	10	
SM+seesaw	10 -9	10 ⁻¹⁰	
Non-Universal Z'	10 -9	10 ⁻⁸	
SUSY+Higgs	10 ⁻¹⁰	10 -7	

B Physics @ Y	(4S)			Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})
• •	× /	SuperB (7	5 ab ⁻¹)	$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$\frac{\text{Observable}}{\sin(2\beta) (J/\psi K^0)}$	0.018	0.005		$ V_{cb} $ (inclusive)	1% (*)	0.5% (*)
$\frac{\sin(2\beta)}{\cos(2\beta)} \left(J/\psi K^{*0} \right)$	0.30	0.003		$ V_{ab} $ (exclusive)	8% (*)	3.0% (*)
$\sin(2\beta) (Dh^0)$	0.10	0.02		$ V_{ub} $ (exclusive) $ V_{ub} $ (inclusive)	8% (*) 8% (*)	2.0% (*)
$\cos(2\beta) (Dh^0)$	0.20	0.02		$ V_{ub} $ (inclusive)	870 (*)	2.0% (*)
$S(J/\psi \pi^0)$	0.10	0.02		$\mathcal{B}(\mathcal{D}) = 0$	20%	407 (4)
$S(D^+D^-)$	0.20	0.03		$\mathcal{B}(B \to \tau \nu)$		4% (†)
$S(\phi K^0)$	0.13	0.02 ($\mathcal{B}(B \to \mu \nu)$	visible	5%
$S(\eta' K^0)$	0.05	0.01 (,	${\cal B}(B o D au u)$	10%	2%
$S(K_s^0K_s^0K_s^0)$	0.15	0.02 (<i>a i</i> =		
$S(K_s^0\pi^0)$	0.15	0.02 (*)	$\mathcal{B}(B o ho \gamma)$	15%	3% (†)
$S(\omega K_s^0)$	0.17	0.03 (*)	${\cal B}(B o \omega \gamma)$	30%	5%
$S(f_0K_s^0)$	0.12	0.02(*)	$A_{CP}(B ightarrow K^* \gamma)$	0.007(†)	0.004 († *)
				$A_{CP}(B ightarrow ho\gamma)$	~ 0.20	0.05
$\gamma \ (B \to DK, D \to CP \text{ eigenstates})$	$\sim 15^{\circ}$	2.5°		$A_{CP}(b ightarrow s\gamma)$	$0.012(\dagger)$	0.004 (†)
$\gamma \ (B \to DK, D \to \text{suppressed states})$	s) $\sim 12^{\circ}$	2.0°	I.	$A_{CP}(b ightarrow (s+d)\gamma)$	0.03	0.006 (†)
$\gamma \ (B \to DK, D \to \text{multibody states})$) $\sim 9^{\circ}$	1. 5°		$S(K^0_S\pi^0\gamma)$	0.15	0.02(*)
$\gamma \ (B \to DK, ext{ combined})$	$\sim 6^{\circ}$	$1-2^{\circ}$)	$S(ho^0\gamma)$	possible	0.10
						
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$	3°		$A_{CP}(B ightarrow K^*\ell\ell)$	7%	1%
$\alpha \ (B \to \rho \rho)$	$\sim 7^{\circ}$	1-2° ((*)	$A^{FB}(B ightarrow K^*\ell\ell)s_0$	25%	9%
$\alpha \ (B \to \rho \pi)$	$\sim 12^{\circ}$	2°	, <u>,</u>	$A^{FB}(B o X_s \ell \ell) s_0$	35%	5%
$\alpha \ (\text{combined})$	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%
$2\beta + \gamma \left(D^{(*)\pm}\pi^{\mp}, D^{\pm}K^0_s\pi^{\mp} \right)$	20°	5°		$\mathcal{B}(B \to \pi \nu \bar{\nu})$	-	possible
	20					
τ Physics	Sensitivit	v	B _s Pl	nysics @ Y((5S)	
			Observa	able	Error with 1 ab^{-1}	Error with 30 ab^{-1}
${\cal B}(au o \mu \gamma)$.	$2 imes 10^{-9}$		ΔΓ		$0.16 \ {\rm ps^{-1}}$	$0.03 \ {\rm ps}^{-1}$
$\mathcal{P}(-)$	0 > 10 - 9		Г		$0.07~\mathrm{ps}^{-1}$	$0.01~\mathrm{ps}^{-1}$
${\cal B}(au o e \gamma)$	2×10^{-9}		eta_s from	n angular analysis	20°	8°
${\cal B}(au o \mu \mu \mu)$	$2 imes10^{-10}$)	$A^s_{ m SL}$		0.006	0.004
			$A_{\rm CH}$		0.004	0.004
$\mathcal{B}(au ightarrow eee)$	$2 imes 10^{-10}$)		$\rightarrow \mu^+\mu^-)$	-	$< 8 \times 10^{-9}$
	4 10-10	1	$ V_{td}/V_{ts} $		0.08	0.017
${\cal B}(au o \mu \eta)$	$4 imes10^{-10}$	·	$\mathcal{B}(B_s - a_s)$		38%	7%
${\cal B}(au o e\eta)$	$6 imes 10^{-10}$)	β_s from		10°	3°
			β_s from	$B_s \to K^0 \bar{K}^0$	24°	11°
$\mathcal{B}(au o \ell K_s^0)$	$2 imes10^{-10}$)				
$\sim (r r r r s)$	<u> </u>	1				N/
						Μ

Charm n	nixing	and Cl	<mark>2</mark>
Mode	Observable		$\psi(3770)$
		(75 ab^{-1})	(300 fb^{-1})
$D^0 \rightarrow K^+ \pi^-$	$x^{\prime 2}$	3×10^{-5}	
-0	y'	7×10^{-4}	
$D^0 \rightarrow K^+ K^-$ $D^0 \rightarrow K^0_S \pi^+ \pi^-$	y_{CP}	5×10^{-4}	
$D^* \rightarrow K_S \pi^+ \pi$	$x \\ y$	4.9×10^{-4} 3.5×10^{-4}	
	q/p	3×10^{-2}	
	ϕ	2°	
$\psi(3770) \rightarrow D^0 \overline{D}^0$	x^2		$(1-2) \times 10^{-5}$
	y		$(1-2) \times 10^{-3}$
	$\cos \delta$		(0.01 - 0.02)
Charme E	CNIC		
Charm F	CINC		Sensitivity
$D^0 \rightarrow e^+e^-, I$	$D^0 \rightarrow \mu^+ \mu$	- ,-	1×10^{-8}
'			
$D^0 \rightarrow \pi^0 e^+ e^-$	2×10^{-8}		
$D^0 \rightarrow \eta e^+ e^-,$	$3 imes 10^{-8}$		
$D^0 ightarrow K^0_s e^+ e^-$	$3 imes 10^{-8}$		
$D^+ ightarrow \pi^+ e^+ e^-$	$1 imes 10^{-8}$		
$D^0 o e^{\pm} \mu^{\mp}$			$1 imes 10^{-8}$
$D^+ \to \pi^+ e^\pm \mu^\pm$	Ŧ		1×10 1×10^{-8}
,			
$D^0 \to \pi^0 e^{\pm} \mu^{\mp}$			$2 imes 10^{-8}$
$D^0 o \eta e^{\pm} \mu^{\mp}$	$3 imes 10^{-8}$		
$D^0 ightarrow K^0_s e^\pm \mu^{\pm}$	F		$3 imes 10^{-8}$
$D^+ \rightarrow \pi^- e^+ e^-$	$^+ D^+ \rightarrow$	$K^{-}e^{+}e^{+}$	$1 imes 10^{-8}$
	•		1×10 1×10^{-8}
$D^+ \to \pi^- \mu^+ \mu$			
$D^+ o \pi^- e^\pm \mu^\pm$	$^+, D^+ \rightarrow$	$K^- e^{\pm} \mu^+$	$1 imes 10^{-8}$

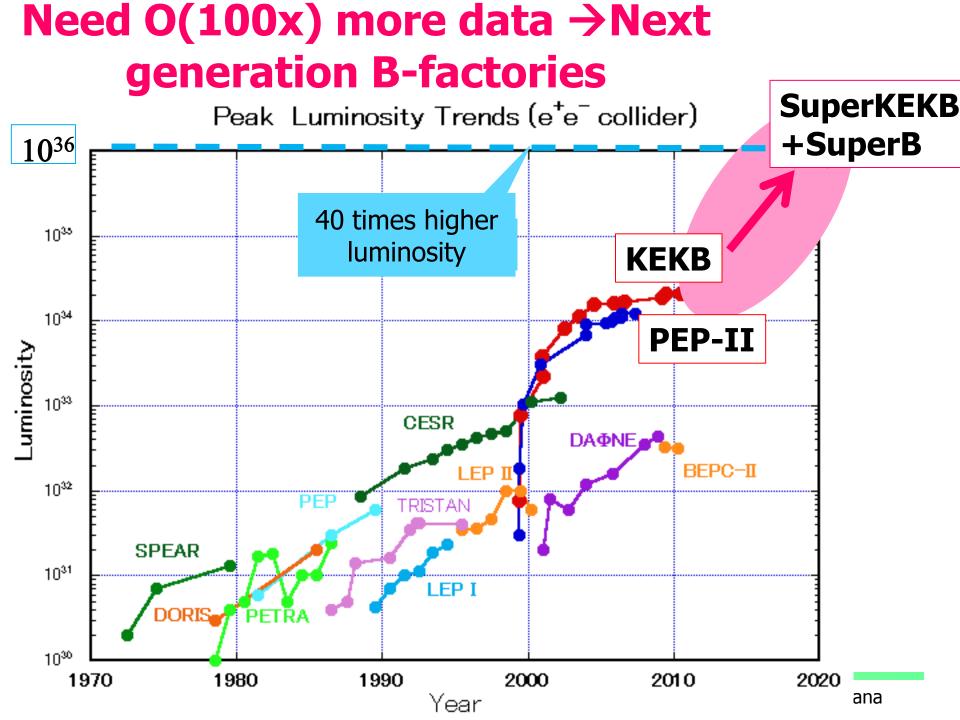
M. Giorgi, ICHEP2010

Physics with 50ab⁻¹ / 75ab⁻¹

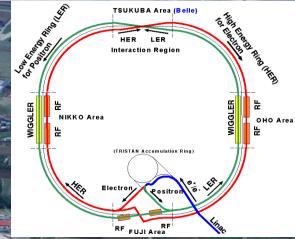
 \rightarrow Two publications:

Physics at Super B Factory (Belle II authors + guests)
 <u>hep-ex</u> > arXiv:1002.5012

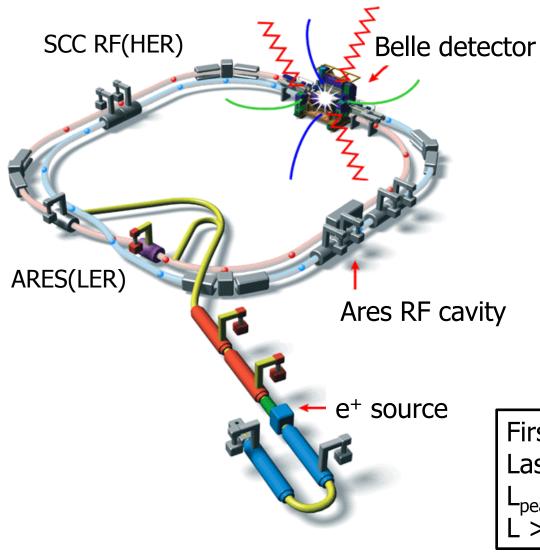
SuperB Progress Reports: Physics (SuperB authors + guests)
 <u>hep-ex</u> > arXiv:1008.1541


Physics at a Super B Factory

- There is a good chance to see new phenomena;
 - CPV in B decays from the new physics (non KM).
 - Lepton flavor violations in τ decays.
- They will help to diagnose (if found) or constrain (if not found) new physics models.
- $B \rightarrow \tau \nu$, $D \tau \nu$ can probe the charged Higgs in large tan β region.
- Physics motivation is independent of LHC.
 - If LHC finds NP, precision flavour physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be a unique way to search for the >TeV scale physics (=TeV scale in case of MFV).


There are many more topics: CPV in charm, new hadrons, ...

Accelerators


Peter Križan, Ljubljana

The KEKB Collider & Belle Detector

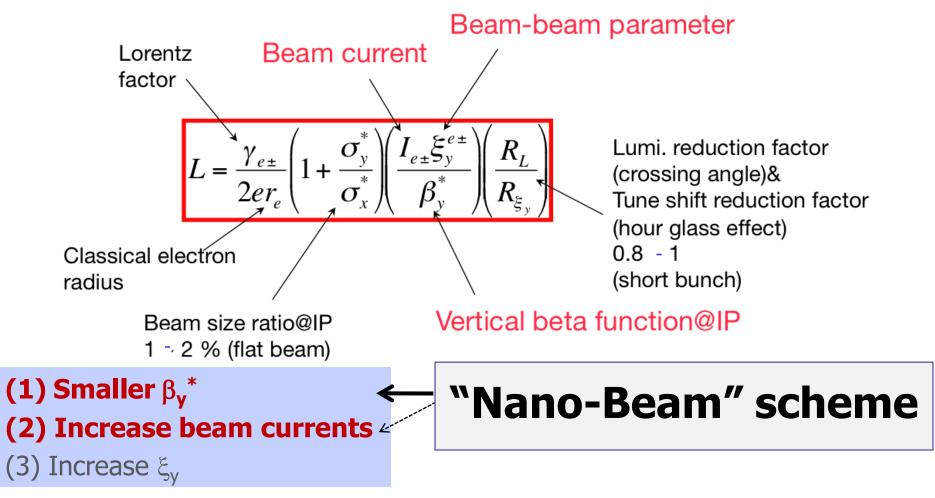
- e⁻ (8 GeV) on e⁺(3.5 GeV)

• √s ≈ m_{Y(4S)}

- Lorentz boost: $\beta \gamma = 0.425$
- 22 mrad crossing angle
- Operating since 1999

Peak luminosity (WR!) : **2.1 x 10³⁴ cm⁻²s⁻¹** =2x design value

First physics run on June 2, 1999 Last physics run on June 30, 2010 $L_{peak} = 2.1 \times 10^{34} / \text{cm}^2/\text{s}$ L > 1ab⁻¹


The last beam abort of KEKB on June 30, 2010

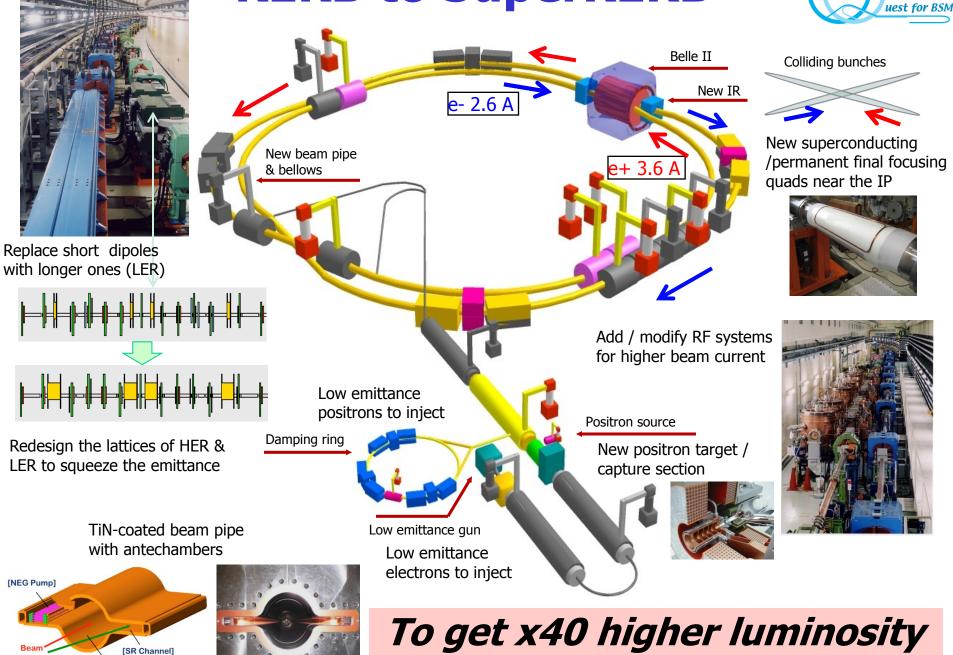
→ Can start construction of SuperKEKB and Belle II

Strategies for increasing luminosity

Collision with very small spot-size beams

Invented by Pantaleo Raimondi for SuperB

Machine design parameters

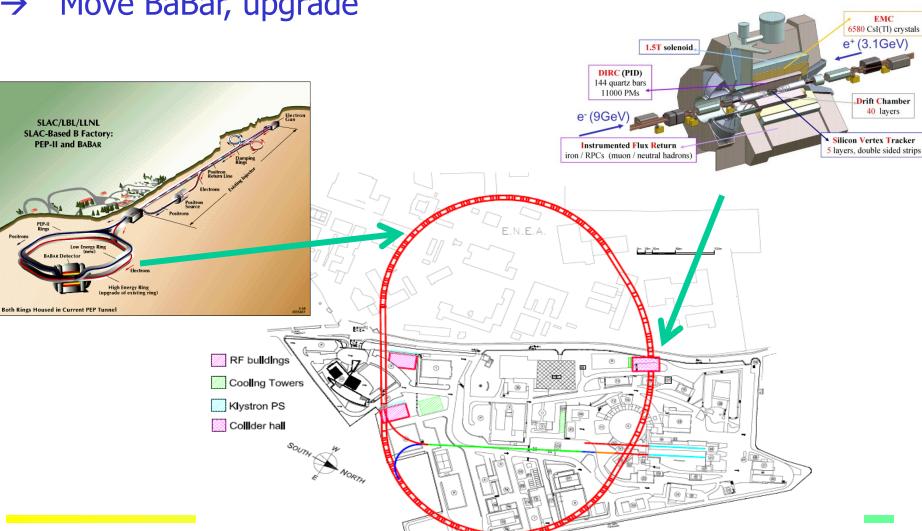

parameters		KE	KB	Super	units	
		LER	HER	LER HER		units
Beam energy	Eb	3.5 8		4	7	GeV
Half crossing angle	φ	1	1	41	mrad	
Horizontal emittance	٤x	18	24	3.2	5.0	nm
Emittance ratio	κ	0.88	0.66	0.27	0.25	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.31	mm
Beam currents	l _b	1.64	1.19	3.60	2.60	А
beam-beam parameter	ξ _y	0.129	0.090	0.0886	0.0830	
Luminosity	L	2.1 x	10 ³⁴	8 x	cm ⁻² s ⁻¹	

- Small beam size & high current to increase luminosity
- Large crossing angle
- Change beam energies to solve the problem of LER short lifetime

KEKB to SuperKEKB

Super

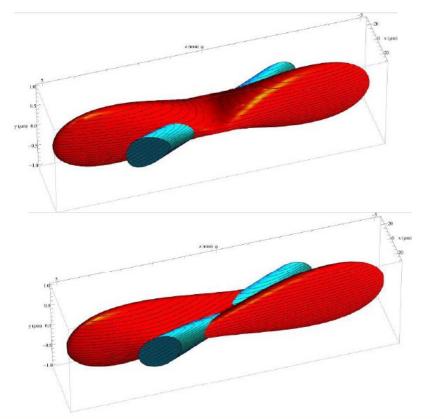
KĖKR



[Beam Channel]

How to do it?

- \rightarrow Construct a new tunnel in Italy
- \rightarrow Move magnets from PEP-II
- \rightarrow Move BaBar, upgrade



(2)

Nano-beam collisions with crab waist

Without Crab-sextupoles

With Crab-sextupoles

All particles from both beams collide in the minimum β_y region, with a net luminosity gain

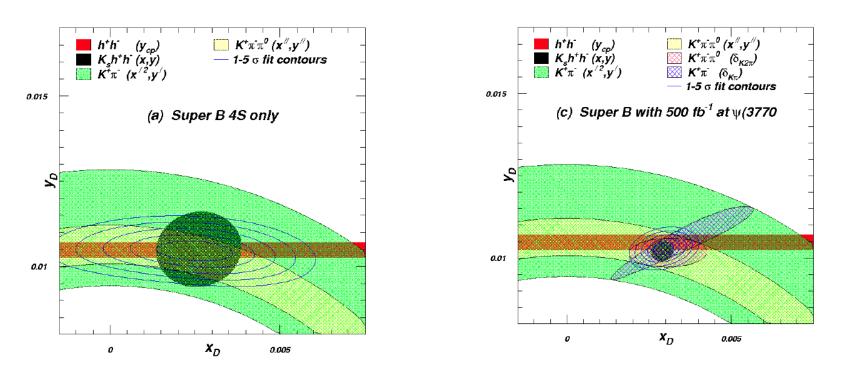
Crab waist scheme: successfully tested in the DA Φ NE ring

Parameters for 1×10³⁶ Lumi (max 4×10³⁶

i arane							•• \•			
		Base Line		Low Emittance		High Current		Tau/Charm (prelim.)		
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (p+)	LER (e-)	
LUMINOSITY	cm ⁻² s ⁻¹	1.00			E+36	1.00	E+36	1.005	+35	
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61	
Circumference	m	125		1258.4		1258.4		1258.4		
X-Angle (full)	mrad	6		66		66		66		[t
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	- 6
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	
β _v @ IP	cm	0.0253	0.0205	0.0179	0.0145		0.0237	0.0658	0.0533	
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	- E
e _x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82	
e _x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4	(
ε _y	pm	5	6.15	2.5	3.075	10	12.3	13	16	
σ _x @ IP	μm	7.244	0.872	5.899	6.274	10.060	12.370	18.749	23.076	
σ _y @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092	
Σx	μm	11.433		8.085		15.944		29.732		
Σ _γ	μm	0.050		0.030		0.076		0.131		
σ _L (0 current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36	- E
σ∟ (full current)	mm	5	5	5	5	4.4		5	5	
Beam current	mA	1892	244	1460	1888	3094	4000	1365	1766	
Buckets distance	#	2		2				1		
lon gap	%	2		2		2		2		
RF frequency	Hz	4.76E+08		4.76E+08		4.76E+08		4.76E+08		_ •
Harmonic number		1998		1998		1998		1998		
Number of bunches	_	978		978		1956		1956		
N. Particle/bunch	-					4.15E+10				-
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080	
Tune shift y		0.0970	0.0971	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910	R
Long. damping time	msec	13.4	20.3	13.4	20.3		20.3		40.6	S
Energy Loss/turn	MeV	2.11	0.865		0.865		0.865	0.4	0.166	l D
σ _E (full current)	dE/E	6.43E-04	7.34E-04		7.34E-04		7.34E-04	6.94E-04		i-
CM o _E	dE/E	5.00		5.00		5.00		5.26		ļ.
Total lifetime	min	4.23		3.05		7.08		11.41		H
Total RF Power	MW	17.		(12.	.72	30.	.48	3.1		Ľ

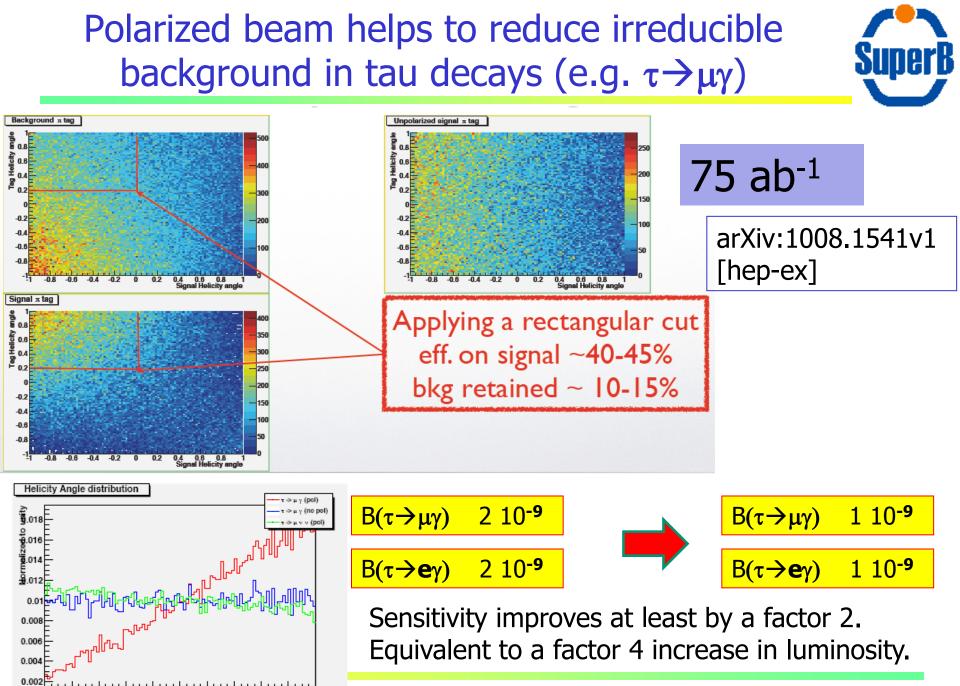
Tau/charm threshold running at 10³⁵

Baseline + other 2 options: Lower y-emittance •Higher currents (twice bunches)


Baseline: Higher emittance due to IBS Asymmetric beam currents

RF power includes SR and HOM

> M. Giorgi, **ICHEP2010**

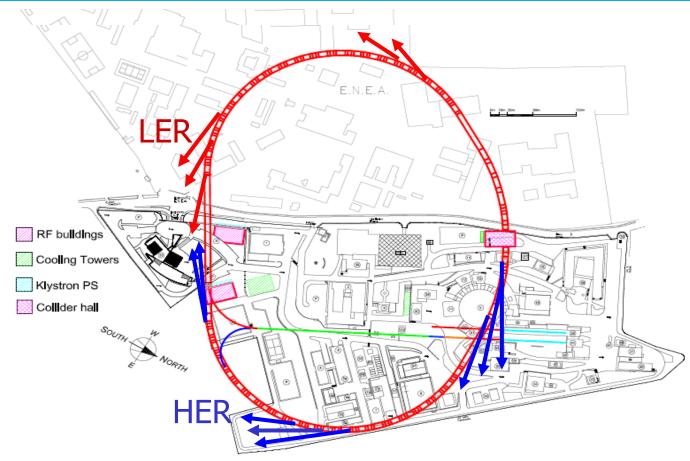

Interest of running at charm threshold Decays of $\psi(3770) \rightarrow D^0 D^0$ produce coherent (C=-1) pairs of D^{0° s

• 3 months of running will give 500fb⁻¹: 50x BES-III

- Precision charm mixing,
- CPT Violation, rare decays, CPV using quantum correlations, decay constants, ...

A. Bevan, Capri Workshop July 2010

M. Giorgi, ICHEP2010


0.8 Helicity angle

0.6

-04 -0.2

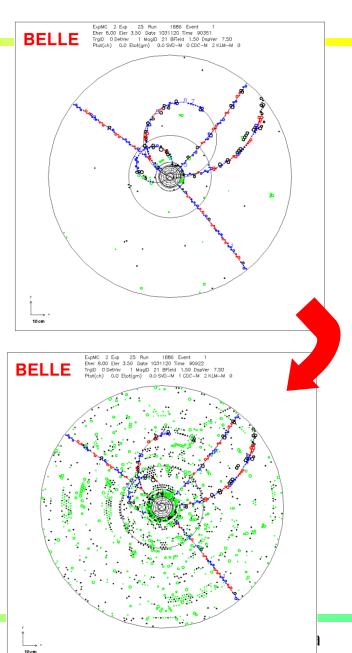
Machine layout

Polarization (80%) is understood and feasible. Parameter flexibility allows 10³⁶ peak lumi without stressing limits! The operation of synchrotron lines and HEP operation seem to be compatible within the same machine.

Detectors

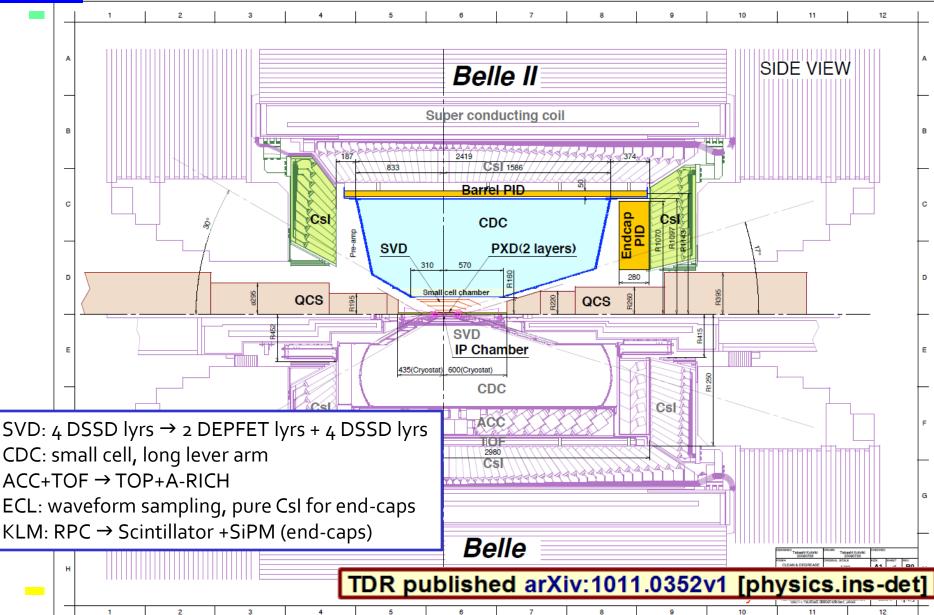
Peter Križan, Ljubljana

Requirements for the Belle II detector

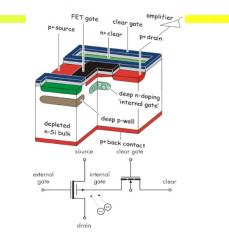

Critical issues at L= 8 x 10^{35} /cm²/sec

- Higher background (×10-20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Solutions:


- Replace inner layers of the vertex detector with a pixel detector.
- Replace inner part of the central tracker with a silicon strip detector.
- Better particle identification device
- Replace endcap calorimeter crystals
- Faster readout electronics and computing system.

Very similar reasoning also for SuperB


Belle II in comparison with Belle

DEPFET: http://aldebaran.hll.mpg.de/twiki/bin/view/DEPFET/WebHome

DEpleted P-channel FET

Beam Pipe

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

DEPFET

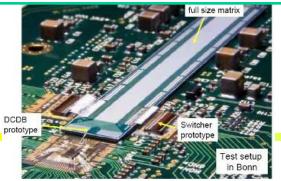
DSSD

r = 10mm

r = 14mm

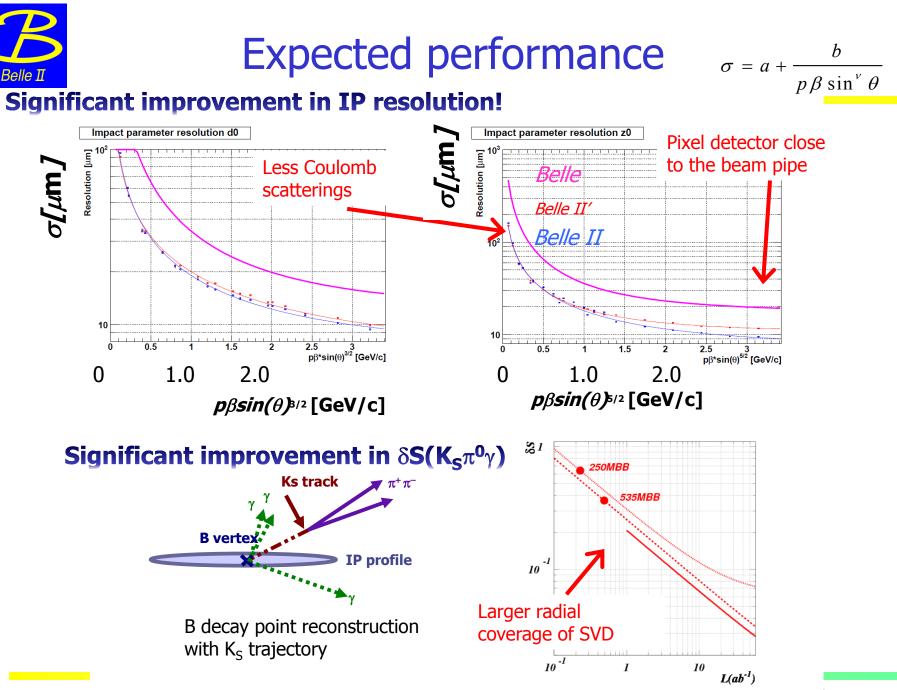
r = 22mm

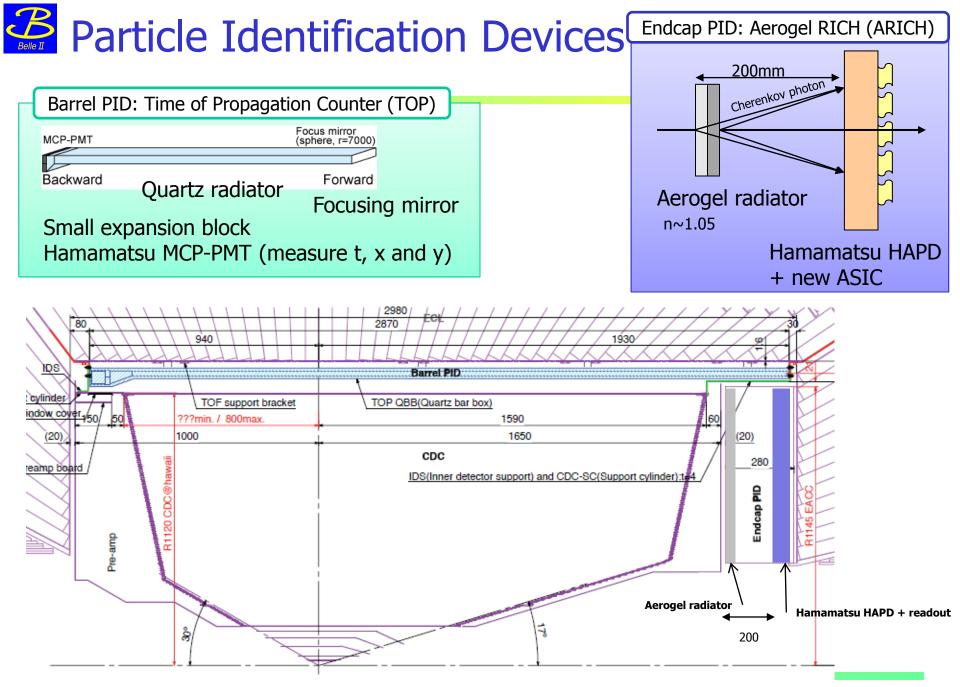
r =

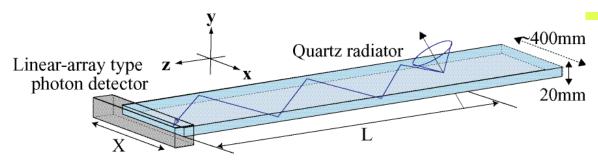

38mm

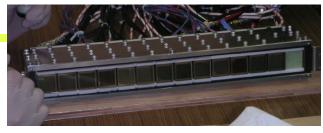
80mm

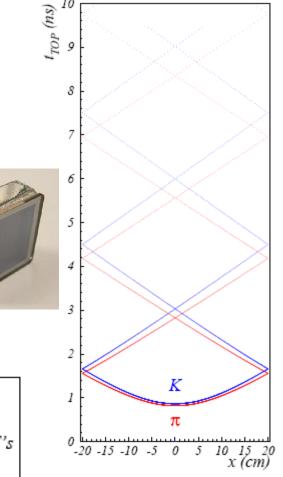
r = 115mm

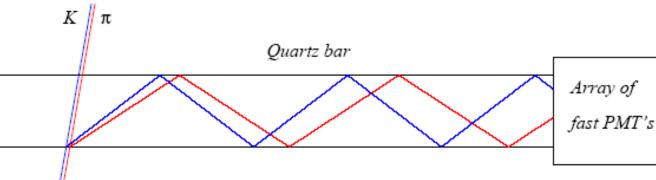

r = 140mm


Prototype DEPFET pixel sensor and readout

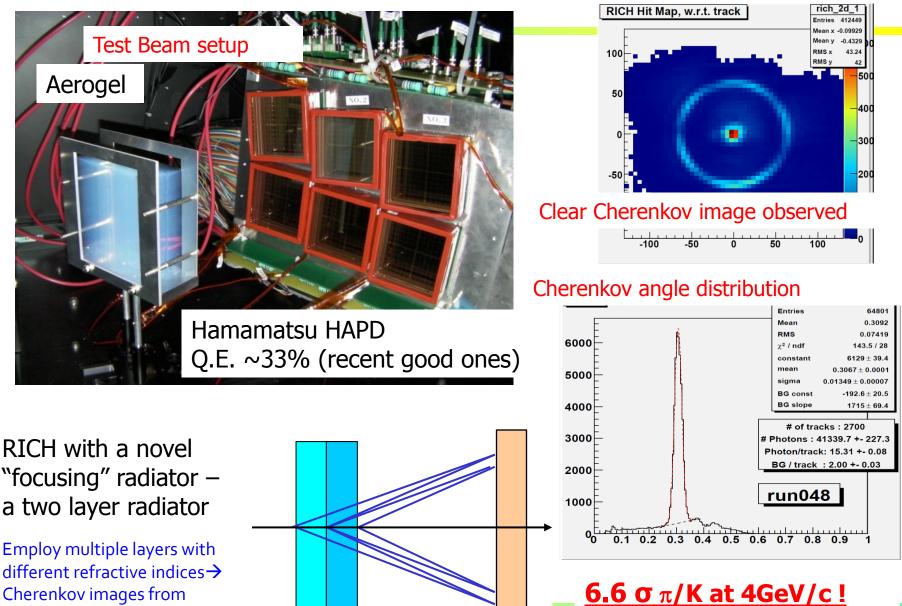



A prototype ladder using the first 6 inch DSSD from Hamamatsu has been assembled and tested.

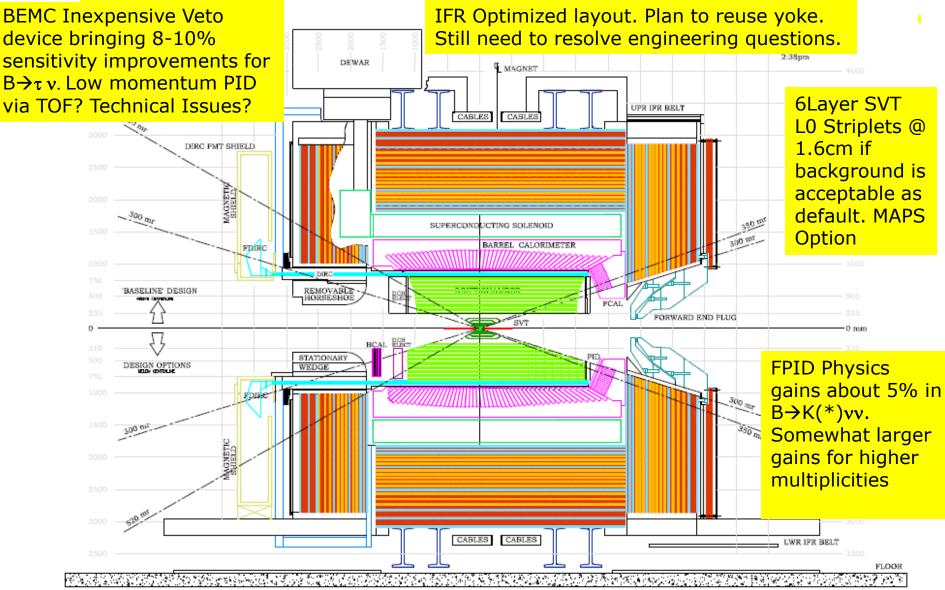



Barrel PID: Time of propagation (TOP) counter

- Cherenkov ring imaging with precise time measurement.
- Reconstruct angle from two coordinates and the time of propagation of the photon
 - Quartz radiator (2cm)
 - Photon detector (MCP-PMT)
 - Good time resolution ~ 40 ps
 - Single photon sensitivity in 1.5



individual layers overlap on the


photon detector.

Aerogel RICH (endcap PID)

SuperB Detector (with options)

M. Giorgi, ICHEP2010

Status of the projects

13 countries/regions, 54 institutes

300 collaborators, >100 from Europe

SuperKEKB/Belle II funding Status

KEKB upgrade has been approved

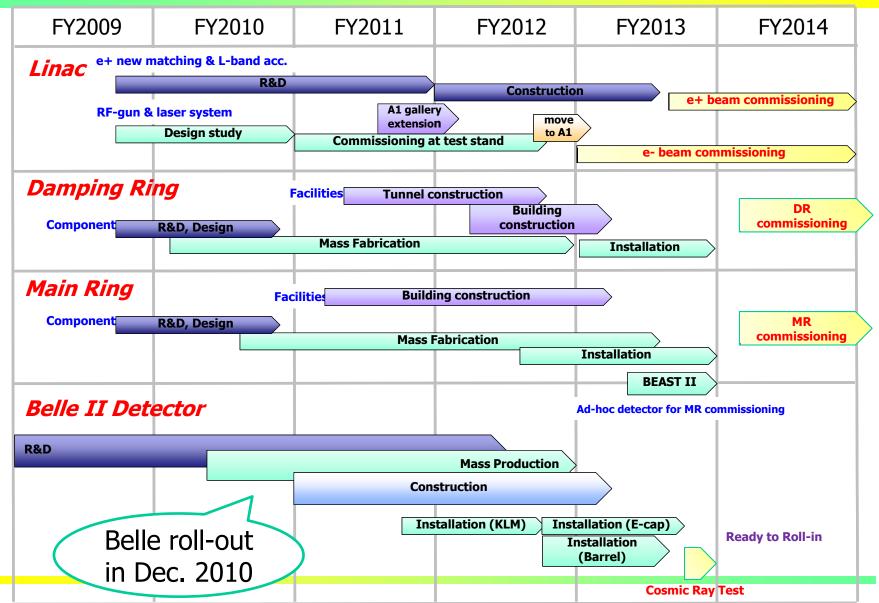
- 5.8 oku yen (~MUSD) for Damping Ring (FY2010)
- 100 oku yen for machine -- Very Advanced Research Support Program (FY2010-2012)
- Full approval by the Japanese government by December 2010; the project is in the JFY2011 budget as approved by the Japanese Diet end of March 2011

Several non-Japanese funding agencies have also already allocated sizable funds for the upgrade.

 \rightarrow construction started!

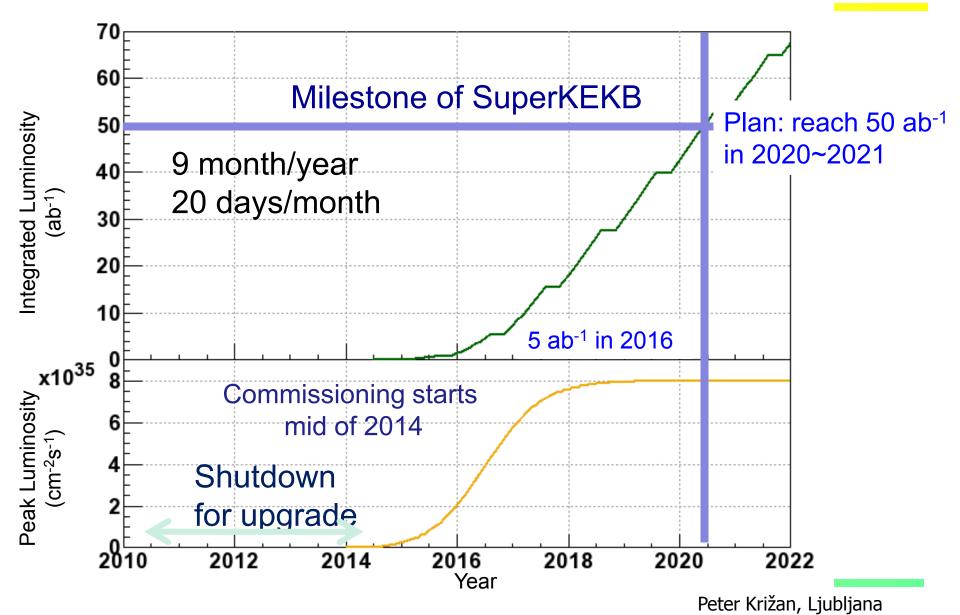
KEKB upgrade plan has been approved

June 23, 2010 High Energy Accelerator Research Organization (KEK)


The MEXT, the Japanese Ministry that supervises KEK, has announced that it will appropriate a budget of 100 oku-yen (approx \$110M) over the next three years starting this Japanese fiscal year (JFY2010) for the high performance upgrade program of KEKB. This is part of the measures taken under the new "Very Advanced Research Support Program" of the Japanese government.

"We are delighted to hear this news," says Masanori Yamauchi, former spokesperson for the Belle experiment and currently a deputy director of the Institute of Particle and Nuclear Studies of KEK. "This three-year upgrade plan allows the Belle experiment to study the physics from decays of heavy flavor particles with an unprecedented precision. It means that KEK in Japan is launching a renewed research program in search for new physics by using a technique which is complementary to what is employed at LHC at CERN."

> [Media Contact] Youhei Morita, Head of Public Relations Office, KEK tel. +81-29-879-6047


copyright(c) 2010, HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION, KEK 1-1 Oho, Tsukuba, Ibaraki 305-0801 Japan

Construction Schedule of SuperKEKB/Belle II

Luminosity upgrade projection

As is now well known, Japan suffered a terrible earthquake and tsunami on March 11, which has caused tremendous damage, especially in the Tohoku area. Fortunately, all KEK personnel and users are safe and accounted for.

The injection linac did suffer significant but manageable damage, and repairs are underway. The damage to the KEKB main rings appears to be less serious, though non-negligible. No serious damage has been reported so far at Belle. Further investigation is necessary.

We would like to convey our deep appreciation to everyone for your generous expressions of concern and encouragement.

Fortunately enough:

- KEKB stopped operation in July 2010, and was already to a large extent disassembled before the earthquake
- Belle was rolled out to the parking position in December.

We will check the functionality of the calorimeter in the next months (channel by channel...)

- SuperB in April 2010 on the list of the Italian National Research Plan (PNR) Flagship Projects
 - Cooperation of INFN and IIT (Italian Institute of Technology): HEP experiment and light source
- In December 2010 first funding of 19M€ as the first part of a pluriennal funding plan
 - Internal to Ministry of Research
- In April 2011 approval of the PNR by CIPE, including 250M€ for SuperB.
 - CIPE is the inter-ministerial committe for economic planning

SuperB Funding in INFN 3-year plan

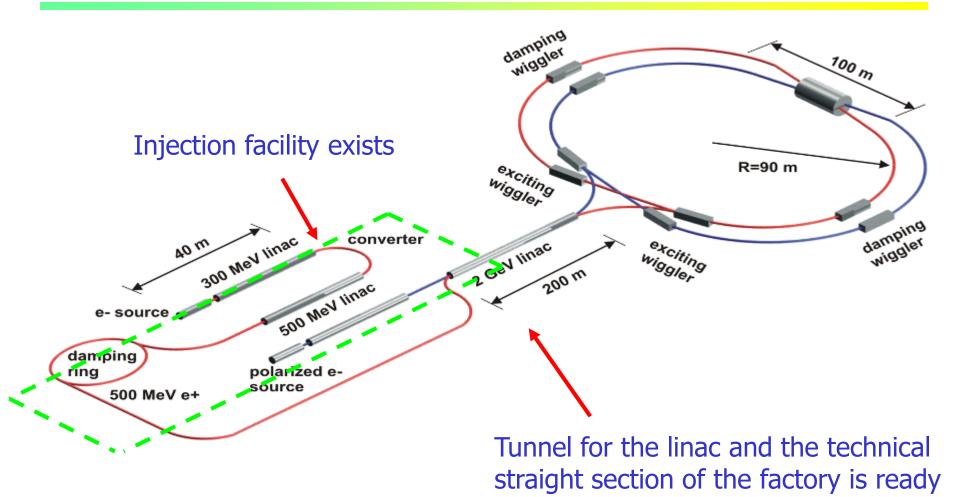
Componenti Super B	Y1	Y2	Y3	Y4	Y5	Y6	¥7	Y8	Y9	Y10
Sviluppo Acceleratore (130 M€)	20	50	60							
Costruzione infrastrutture, Sviluppo damping rings, Sviluppo transfer lines, Messa in funzione linac, Damping lines transfer lines, Costruzione facility end-user										
Sviluppo Centri Calcolo (43 M€)	5	15	23							
Sviluppo progettazione costruzione centro di calcolo per analisi dati										
Completamento Acceleratore (126 M€)				42	42	42				
Installazione componenti negli archi acceleratore, Installazione zona di interazione, Messa in funzione acceleratore										
Utilizzo installazione (80 M€)							20	20	20	20
Costi operazione e manutenzione acceleratore										
Totale Infrastrutture tecniche (379 M€)	25	65	83	42	42	42	20	20	20	20
Overheads INFN	2.3	5.9	7.5	3.8	3.8	3.8	1.8	1.8	1.8	1.8
(34.3 M€ equivalente al 9%)										
Cofinanziamento INFN (150 M€)	15	15	15	15	15	15	15	15	15	15
• · • • · • • • · • · • • • • • • • • •										
Costo Totale del progetto (563.3 M€)	42.3	85.9	105.5	60.8	60.8	60.8	36.8	36.8	36.8	36.8

Funding for

- Accelerator
- Infrastructure
- Computing

Detector funding inside ordinary funding agency budget.

In addition, we re-use parts of PEP-II and Babar, for a value of about 135M€


IIT contribution (100M?) in addition, mainly for synchrotron light lines construction.

- Choose the site asap! Foreseen end of May 2011.
 - The preferred site is Tor Vergata close to LNF
- Complete the Technical Design Report
 - End of 2011/Mid 2012
- Prepare the transition from TDR Phase to Construction
 - Collaboration will start formally forming at the Elba meeting, May 2011
- Start recruitment for the construction: mainly accelerator physicists and engineers
- Completion of construction foreseen in 2015/16.

τ -charm factory

Layout of the Novosibirsk c/τ factory

Physics at τ -charm factory

- Precision charm physics
 - Precision charm \rightarrow precision CKM (strong phases, f_D, f_{Ds} ...)
 - High sensitivity search for rare processes (rare D & $\Lambda_{\rm c}$ decays, CPV, mixing)
- Precision τ -physics with polarized beams
 - Lepton universality, Lorentz structure of τ -decay...
 - CPV
 - LFV decays
 - Second class currents
- High statistic spectroscopy and search for exotics
 - Charm and charmonium spectroscopy
 - Light hadron spectroscopy in charmonium decays ($N_{J/\psi} \sim 10^{12}$)

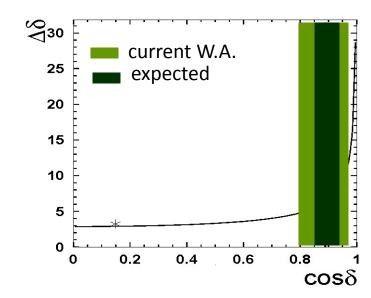
Super τ charm factory

Mixing parameters @ charm factory (threshold) of lower accuracy than @ B factory (unless t-dependent meas. with asymmetric collider);

Various options for CPV measurements several competitive or better, and complementary to B-factory (including D^0D^0 with C=+1); many other possibilities (Dalitz studies, triple product correlations, T-odd moments, ...)

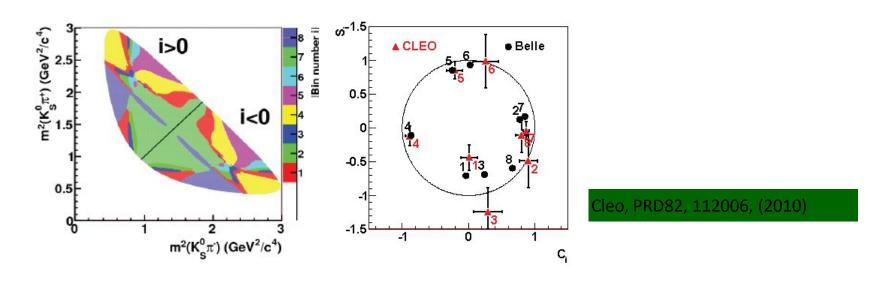
Summary

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance, achieving and surpasing design values
- Major upgrade at KEK in 2010-14 → SuperKEKB+Belle II, L x40, construction started, final approval by the Japanese government end of 2010, included in the JFY2011 budget
- SuperB in Italy: build a new tunnel, reuse (+ugrade) PEP-II and BaBar, approval by INFN end of 2010, government in April 2011
- Physics reach updates available
- c/tau factory with high luminosity and longitudinal polarization could provide complementary opportunities for tests of the Standard Model
- Expect a new, exciting era of discoveries, complementary to the LHC

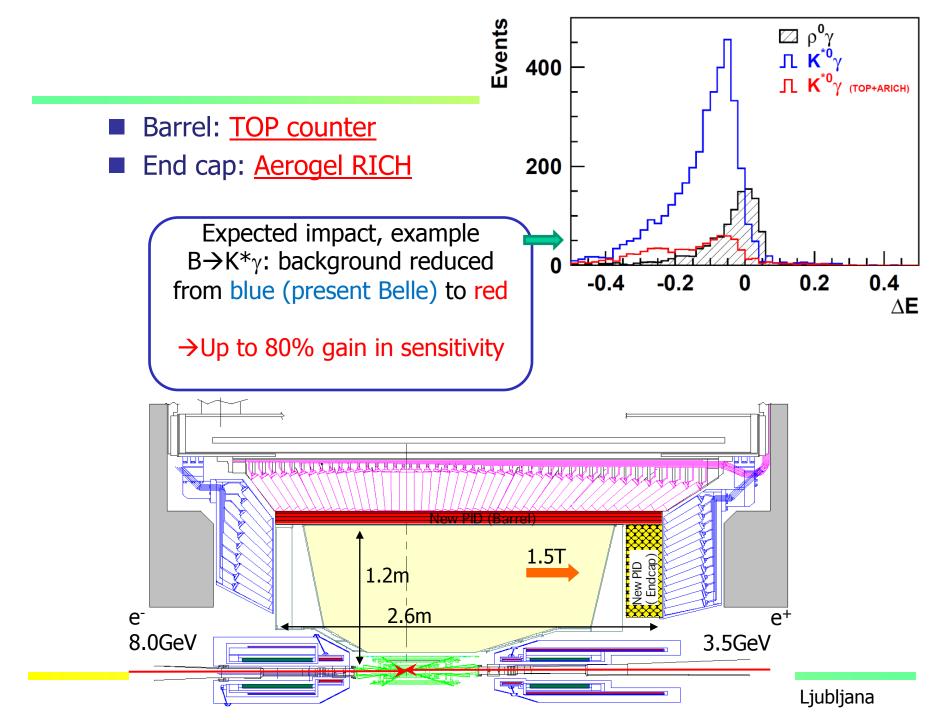


Additional slides

Charm-factories


20 fb⁻¹:
$$\sigma(R_M) \sim 1 \cdot 10^{-4}$$

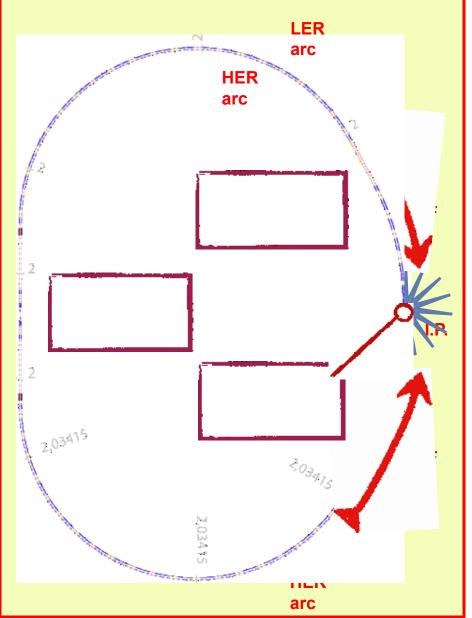
(from $\psi(3770) \rightarrow K^-\pi^+, K^-\pi^+$)
(n.b.: $R_M \sim 1 \cdot 10^{-4}$);
 $\sigma(y) \sim 0.3\%$
 $\sigma(\cos \delta) \sim 0.04$



important contribution in measurements

of strong phase difference over Dalitz plane for multi-body decays;

e.g. $D^0 \rightarrow K_s \pi^+ \pi^-$ model independent (more accurate) measurement of ϕ_3



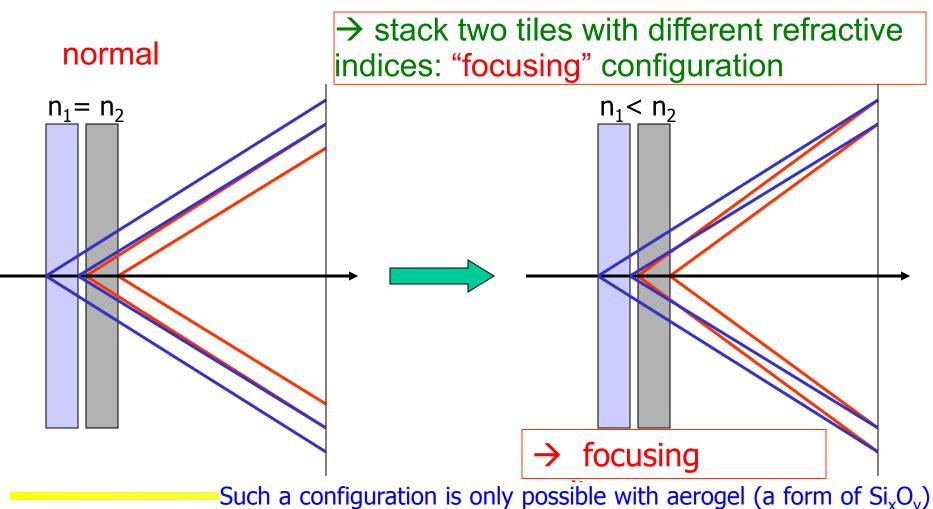
SuperB Parameters

		Base Line		Low Emittance		High Current		Tau-charm	
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)
LUMINOSITY	сш ⁻² s ⁻¹	1.00E+36		1.00E+36		1.00E+36		1.00E+35	
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61
Circumference	ш	1258.4		1258.4		1258.4		1258.4	
X-Angle (full)	mrad	66		66		66		66	
β _x @ IP	сш	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32
β _y @ IP	сш	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533
Coupling (full current)	96	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25
Emittance x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4
Emittance y	рш	5	6.15	2.5	3.075	10	12.3	13	16
Bunch length (full current)	шm	5	5	5	5	4.4	4.4	5	5
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766
Buckets distance	#	2			2	1		1	
Ion gap	9/o	2		2		2		2	
RF frequency	MHz	476.		476.		476.		476.	
Revolution frequency	MHz	0.238		0.238		0.238		0.238	
Harmonic number	#	1998		1998		1998		1998	
Number of bunches	#	978		978		1956		1956	
N. Particle/bunch (10 ¹⁰)	#	5.08	6.56	3.92	5.06	4.15	5.36	1.83	2.37
$\sigma_{\rm r}$ effective	μm	165.22	165.30	165.22	165.30	145.60	145.78	166.12	166.67
σ _y @ IP	щ	0.036	0.036	0.021	0.021	0.054	0.0254	0.092	0.092
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15
$\Sigma_{\rm t}$ effective	μm	233.35		233.35		205.34		233.35	
Σ _y	μш	0.050		0.030		0.076		0.131	
Hourglass reduction factor		0.950		0.950		0.950		0.950	
Tune shift x		0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080
Tune shift y		0.097	0.097	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910
Longitudinal damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6
Energy Loss/turn	MeV	2.11	0.865	2.11	0.865	2.11	0.865	0.4	0.17
Momentum compaction (10 ⁻⁴)		4.36	4.05	4.36	4.05	4.36	4.05	4.36	4.05
Energy spread (10 ⁻⁴) (full current)	dE/E	6.43 7.34		6.43 7.34		6.43 7.34		6.43 7.34	
CM energy spread (10*)	dE/E	5.0		5.0		5.0		5.0	
Total lifetime	min	4.23	4.48	3.05	3	7.08	7.73	11.4	6.8
Total RF Wall Plug Power	MW	16	.38	12.37		28.83		2.81	

SuperB

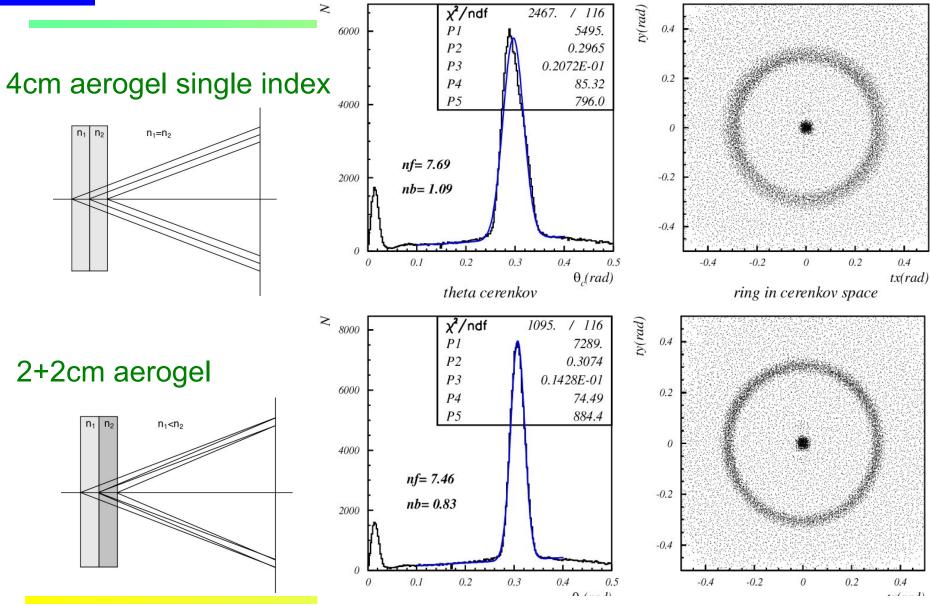
SUPERB COLLIDER PROGRESS REPORT

Background Issue: sources


	Cross section	Evt/bunch xing	Rate					
Beam Strahlung	~340 mbarn ($E_{\gamma}/Ebeam > 1\%$)	~850	0.3THz					
e⁺e⁻ pair production	~7.3 mbarn	~18	7GHz					
e⁺e⁻ pair (seen by L0 @ 1.5 cm)	~0.07 mbarn	~0.2	70 MHz					
Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~250/Million	100KHz					
Y(4S)	O(10 ⁻⁶) mbarn	~2.5/Million	1 KHz					
	Loss rate	Loss/bunch pass	Rate					
Touschek (LER)	4.1kHz / bunch (+/- 2 m from IP)	~3/100	~5 MHz					
Two colliding beams :	radiative Bhabha \rightarrow dominant effect on lifetime e+e- e+e- production \rightarrow important source for SVT layer-0							
Single beam : Single beam : S								

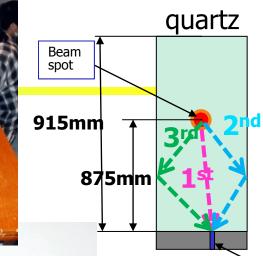
Collimators, dynamic aperture and energy acceptance optimization solve the problem of Touschek background in LER

Radiator with multiple refractive indices

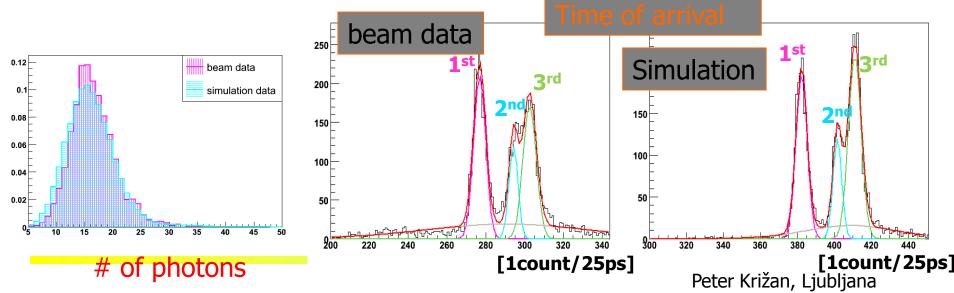

How to increase the number of photons without degrading the resolution?

– material with a tunable refractive index between 1.01 and 1.13.

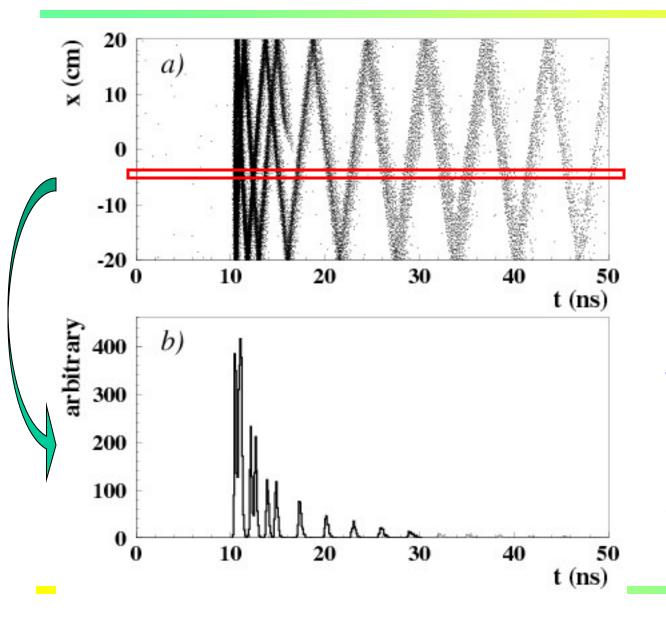
Focusing configuration – data



→NIM A548 (2005) 383



TOP (Barrel PID)


- Quartz radiator
 - 2.6m^L x 45cm^W x 2cm^T
 - Excellent surface accuracy
- MCP-PMT
 - Hamamatsu 16ch MCP-PMT
 - Good TTS (<35ps) & enough lifetime
 - Multialkali photo-cathode \rightarrow SBA
- Beam test in 2009
 - # of photons consistent
 - Time resolution OK

TOP image

Pattern in the coordinate-time space ('ring') of a pion hitting a quartz bar with ~80 MAPMT channels

Time distribution of signals recorded by one of the PMT channels: different for π and K