New Tools for Forecasting Old Physics at the LHC

Lance Dixon (CERN & SLAC)

CERN Colloquium 20 January, 2011

The Large Hadron Collider

- Proton-proton collisions at 7 → 14 TeV center-of-mass energy,
 3.5 → 7 times greater than previous (Tevatron)
- Luminosity (collision rate) → 10—100 times greater
- New window into physics at shortest distances opening now!

L. Dixon New Tools for Forecasting Old Physics

CERN 20 Jan. 2011

New Physics around the Corner

Expect new physics at the 100 GeV – 1 TeV mass scale, associated with electroweak symmetry breaking. At least, a Higgs boson (or similar)

• Many theories predict a host of new massive particles in this mass range, including a dark matter candidate

- supersymmetry
- new dimensions of space-time
- new forces
- etc.

• Most new massive particles decay rapidly to old, ~massless particles: quarks, gluons, charged leptons, neutrinos, photons

3

How to distinguish new physics from old (Standard Model)?
From other types of new physics?

Signals vs. Backgrounds

electron-positron colliders – small backgrounds

- large backgrounds

LHC Data Dominated by Jets

Jets come from quarks and gluons.

- *q,g* from decay of new particles?
- Or from old QCD?

Every process shown also comes with one more jet at ~ 1/5 the rate
Should understand Standard Model production of X + 1,2,3,... jets where X = W, Z, tt, WW, H, ...

A Few Postcards from the Frontier

L. Dixon New Tools for Forecasting Old Physics

CERN 20

20 Jan. 2011

6

Now let's talk about the weather...

L. Dixon New Tools for Forecasting Old Physics

CERN 20 Jan. 2011

LHC events and clouds

- Both have fractal properties
- Cannot predict individual events
 - Clouds: unpredictable turbulence, etc., on small distance scales
 - LHC: quantum mechanics, plus unpredictable QCD (strongly coupled) at long distances
- All about predicting suitable ensembles
 - weather, or climate, using global circulation models (large distances)
 - cross sections or probabilities that (ideally) are only sensitive to short distances (infrared safe) using perturbative QCD
 - new physics ~ climate change

Asymptotic Freedom

Gross, Wilczek, Politzer (1973)

Gluon self-interactions make quarks almost free, and make QCD calculable at short distances (high energies)

Quantum fluctuations of massless virtual particles polarize vacuum

QED: electrons screen charge (e larger at short distances) QCD: gluons anti-screen charge (g_s smaller at short distances)

CERN

Asymptotic Freedom (cont.)

Running of α_s is *logarithmic*, *slow* at short distances (large Q)

Calorimeter-level jets

QCD Factorization & Parton Model

Asymptotic freedom: At short distances, quarks and gluons (partons) in proton are almost free, and are sampled "one at a time"

Short-Distance Cross Section in Perturbation Theory

LO uncertainty increases with n_{jets}

Uncertainty brought under much better control with NLO corrections: $\sim 50\%$ or more $\rightarrow \sim 15-20\%$

NLO really required for quantitative control of multi-jet final states

L. Dixon New Tools for Forecasting Old Physics

CERN 20 Jan. 2011

New Physics Example: Supersymmetry

- Symmetry between fermions (matter) and bosons (forces)
- Very elegant, also solves theoretical puzzles
- Lightest supersymmetric particle can be dark matter
- For every elementary particle already seen, another one should show up soon at LHC!

Backgrounds to Supersymmetry at LHC

Signal: missing energy (MET) + 4 jets

SM background:

 $\begin{array}{c} q \\ \overline{q} \\ \overline{q} \\ \overline{q} \\ \overline{q} \\ \overline{q} \end{array} \xrightarrow{q} \gamma_{\nu\nu}$

Current state of art for Z + 4 jets based on **LO approximation** \rightarrow normalization still quite uncertain

Motivates goal of

New Limits on Supersymmetry from LHC

CMS, 1101.1628

• LHC off to an extremely promising start!

• As data increases rapidly this year, better SM theory can help

L. Dixon New Tools for Forecasting Old Physics

CERN 20 Jan. 2011 1

16

Reducing Background Systematics Improves SUSY Search Sensitivity

Significance for 4j0l, flat priors

LO = Trees

LO cross section can be computed using only Feynman diagrams with no closed loops – called tree diagrams. Here is a very simple one:

Although there are many kinds of trees, some harder than others, "textbook" methods often suffice

NLO = Loops

NLO cross section needs Feynman diagrams with exactly one closed loop

Where the fun really starts – textbook methods quickly fail, even with very powerful computers

- NLO also needs tree-level amplitudes with one more parton
- Both terms infinite(!) combine them to get a finite result

Loops get difficult quickly!

A Better Way to Compute?

 Backgrounds (and many signals) require detailed understanding of scattering amplitudes for many ultra-relativistic ("massless") particles

 – especially quarks and gluons of QCD

 Long ago,
 Feynman told us how to do this
 – in principle

21

- However, Feynman diagrams, while very general and powerful, are not optimized for these processes
- There are more efficient methods for multi-jet processes!

L. Dixon New Tools for Forecasting Old Physics

CERN 20 Jan. 2011

Remembering a Simpler Time...

 In the 1960s there was no QCD, no Lagrangian or Feynman rules for the strong interactions

The Analytic S-Matrix

Bootstrap program for strong interactions: Reconstruct scattering amplitudes **directly** from **analytic properties**: **"on-shell" information**

Landau; Cutkosky; Chew, Mandelstam; Eden, Landshoff, Olive, Polkinghorne; Veneziano; Virasoro, Shapiro; ... (1960s)

Analyticity fell out of favor in 1970s with the rise of QCD & Feynman rules

Now resurrected for computing amplitudes in perturbative QCD – as alternative to Feynman diagrams! Perturbative information now assists analyticity.

L. Dixon New Tools for Forecasting Old Physics CERN 20 Jan. 2011

The Tail of the Mantis Shrimp

- Reflects left and right circularly polarized light differently
- Led biologists to discover that its eyes have differential sensitivity
 It communicates via the helicity formalism

"It's the most private communication system imaginable. No other animal can see it."

- Roy Caldwell (U.C. Berkeley)

What the Biologists Didn't Know

Particle theorists have also evolved capability to communicate results via helicity formalism

Helicity Formalism Exposes **Tree-Level Simplicity in QCD**

Many helicity amplitudes either vanish or are very short

Parke-Taylor formula (1986)

For Efficient Computation

Reduce

the number of "diagrams"

Reuse

building blocks over & over

Recycle

lower-point (1-loop) & lower-loop (tree) on-shell amplitudes

Recurse

L. Dixon New Tools for Forecasting Old Physics

RECYCLE

Recycling "Plastic" Amplitudes

Amplitudes fall apart into simpler ones in special limits – pole information

CERN

→ BCFW (On-shell) Recursion Relations

Britto, Cachazo, Feng, Witten, hep-th/0501052

 A_{k+1} and A_{n-k+1} are **on-shell** tree amplitudes with **fewer** legs, and with momenta **shifted** by a **complex** amount

Trees recycled into trees

All Gluon Tree Amplitudes Built From:

In contrast to Feynman vertices, it is on-shell, completely physical

 On-shell recursion leads to very compact analytic formulae, and fast numerical implementation.

• Can do same sort of thing at loop level.

Branch cut information → Generalized Unitarity (One-loop Plasticity)

Ordinary unitarity: put 2 particles on shell

Generalized unitarity: put 3 or 4 particles on shell

One-Loop Amplitude Decomposition

Bern, LD, Dunbar, Kosower (1994)

Missing from the old, nonpertubative analytic S-matrix

CERN 2

Generalized Unitarity for Box Coefficients d_i

Just multiply together 4 different tree amplitudes, evaluated at 2 different loop momenta that solve simple "quadruple cut" equations:

$$d_{i} = A^{1-\text{loop}}(\ell_{i})|_{\ell_{i}^{2}=m_{i}^{2}, i=1,2,3,4}$$

= $\sum_{\pm} A_{1}^{\text{tree}}(\ell_{0}^{\pm})A_{2}^{\text{tree}}(\ell_{0}^{\pm})A_{3}^{\text{tree}}(\ell_{0}^{\pm})A_{4}^{\text{tree}}(\ell_{0}^{\pm})$
= $d_{i}^{+} + d_{i}^{-}$

L. Dixon New Tools for Forecasting Old Physics

Rest of amplitude determined hierarchically

Each box coefficient comes uniquely from 1 "quadruple cut"

Ossola, Papadopolous, Pittau, hep-ph/0609007; Mastrolia, hep-th/0611091; Forde, 0704.1835; Ellis, Giele, Kunszt, 0708.2398; Berger et al., 0803.4180;... Each triangle coefficient from 1 triple cut, but "contaminated" by boxes

Each bubble coefficient from 1 double cut, removing contamination by boxes and triangles

L. Dixon New Tools for Forecasting Old Physics

CERN 20 Jan. 2011

34

Bottom Line:

Trees recycled into loops!

Similar methods work for multiple loops – especially in theories with lots of supersymmetry like N=4 super-Yang-Mills and N=8 supergravity

L. Dixon New Tools for Forecasting Old Physics

CERN

20 Jan. 2011

Automated On-Shell Programs at One Loop

CutTools:Ossola, Papadopolous, Pittau, 0711.3596NLO WWW, WWZ, ...Binoth+OPP, 0804.0350NLO ttbb, tt + 2 jets,...Bevilacqua, Czakon, Papadopoulos,Pittau, Worek, 0907.4723; 1002.4009; now going into MadGraph (Frederix, Frixione,...)

Blackhat: Berger, Bern, LD, Febres Cordero, Forde, H. Ita, D. Kosower, D. Maître; T. Gleisberg, 0803.4180, 0808.0941, 0907.1984, 1004.1659, 1009.2338 + Sherpa → NLO *W*,*Z* + 3,4 jets

Rocket:

Giele, Zanderighi, 0805.2152

Ellis, Giele, Kunszt, Melnikov, Zanderighi, 0810.2762

NLO W + 3 jets (large N_c), W⁺W⁺ + 2 jets EMZ, 0901.4101, 0906.1445; Melia, Melnikov, Rontsch, Zanderighi, 1007.5313

SAMURAI:

Mastrolia, Ossola, Reiter, Tramontano, 1006.0710

NGluon:

Badger, Biedermann, Uwer, 1011.2900

CERN 20 Jan. 2011

As a result...

Dramatic increase recently in rate of NLO predictions for new processes!

Les Houches Experimenters' Wish List

	2010		
process wanted at NLO	background to		
1. $pp ightarrow VV + jet$	$tar{t}H$, new physics Dittmaier, Kallweit, Uwer; Campbell, Ellis, Zanderighi	Feynman	
2. $pp ightarrow H+2$ jets	<i>H</i> in VBF BCDEGMRSW; Campbell, Ellis, Williams Campbell, Ellis, Zanderighi; Ciccolini, Denner Dittmaier	diagram methods	
3. $pp ightarrow t ar{t} b ar{b}$	tīH Bredenstein, Denner Dittmaier, Pozzorini; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek		
4. $pp ightarrow tar{t} + 2$ jets	$tar{t}H$ Bevilacqua, Czakon, Papadopoulos, Worek	now joined	
5. $pp ightarrow VV b ar{b}$	$VBF o H o VV$, $tar{t}H$, new physics	by	
6. $pp ightarrow VV + 2$ jets	VBF o H o VV Melia, Melnikov, Rontsch, Zanderighi		
	VBF: Bozzi, Jäger, Oleari, Zeppenfeld	on-shell	
7. $pp ightarrow V+3$ jets	new physics	methods	
8. $pp ightarrow VVV$	Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre; Ellis, Melnikov, Zanderighi SUSY trilepton	based on analyticity (unitarity)	
	Lazopoulos, Melnikov, Petriello; Hankele, Zeppenfeld; Binoth, Ossola, Papadopoulos, Pittau	table courtesy of	
9. $pp ightarrow bbbb$	Higgs, new physics GOLEM	C. Berger	

L. Dixon New Tools for Forecasting Old Physics

CERN

20 Jan. 2011

38

Top Quark Pairs + Jets

- Like (W,Z) + jets, a very important class of backgrounds
- Jets can boost the $t \overline{t}$ system, increasing missing E_{T} , and provide jets to pass various signal cuts.
- Cross sections large no electroweak couplings
- State of art:
- NLO *tt* + 1 jet: Dittmaier, Uwer, Weinzierl, hep-ph/0703120,...
- + top decays: Melnikov, Schulze, 1004.3284
- + NLO parton shower: Kardos, Papadopoulos, Trócsányi, 1101.2672
- NLO *tt* + *bb*: Bredenstein, Denner, Dittmaier, Pozzorini, 0905.0110, 1001.4006; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek, 0907.4723
- NLO tt + 2 jets: Bevilacqua, Czakon, Papadopoulos, Worek, 1002.4009

L. Dixon New Tools for Forecasting Old Physics

CERN 20 Jan. 2011

NLO $pp \rightarrow t\overline{t} \, b\overline{b}$ at LHC

Background to $t\bar{t} + Higgs$, $H \rightarrow b\bar{b}$ First done using Feynman diagrams Recomputed using unitarity (**CutTools**)

Bredenstein et al., 0807.1248, 0905.0110 Bevilacqua et al., 0907.4723

at LHC (for λ_t)

, a background to

Only computed via unitarity (CutTools)

Like

Bevilacqua, Czakon, Papadopoulos, Worek, 1002.4009

Again large reduction in scale dependence from LO \rightarrow NLO

W + 3 jets at Tevatron \rightarrow LHC

Agrees well with data; more data available now from Tevatron and LHC

L. Dixon New Tools for Forecasting Old Physics

20 Jan. 2011

Total Transverse Energy H_T at LHC

 $H_T = \sum_{r} E_{T,j}^{\text{jet}} + E_T^e + E_T^{\nu}$ often used in supersymmetry searches

L. Dixon New Tools for Forecasting Old Physics

CERN

NLO $pp \rightarrow W+4$ jets

First hadron collider process known at NLO with 5 objects in final state. Also important SUSY background.

L. Dixon New Tools for Forecasting Old Physics

CERN 20 Jan. 2011

45

One indicator of NLO progress

$pp \rightarrow W + 0 jet$	1978	Altarelli, Ellis, Martinelli
$pp \rightarrow W + 1 jet$	1989	Arnold, Ellis, Reno
$pp \rightarrow W + 2 jets$	2002	Campbell, Ellis
$pp \rightarrow W + 3 jets$	2009	BH+Sherpa
		Ellis, Melnikov, Zanderighi
$pp \rightarrow W + 4 jets$	2010	BH+Sherpa

Conclusions

- New and efficient computational approaches to one-loop QCD amplitudes now used to forecast important Standard Model backgrounds at the LHC
 - exploit analyticity/unitarity: build loop amplitudes out of trees
 - implemented numerically in several programs: BlackHat, CutTools, NGluon, Rocket, Samurai, ...
- Long and growing list of complex processes computed at NLO with these techniques:
- *VVV* (*V*=*W* or *Z*)
- ttbb, ttj, ttjj
- *W*⁺*W*⁺*jj*
- Wjjj, Zjjj, Wjjjj
- Also very important to incorporate into NLO Monte Carlos, a la MC@NLO & POWHEG (no time to discuss here)
- Success will assist in optimal exploitation of LHC data!

L. Dixon New Tools for Forecasting Old Physics CERN 20 Jan. 2011 48