
Cryogenic and safety design of the future High Field Cable Test Facility at Fermilab Romain Bruce, Terry Tope, Sergey Koshelev, Jay Theilacker, Vlad Nikolic, Gueorgui Velev

Overview of the test facility

High Field Vertical Magnet Test Facility (HFVMTF) is a new test stand installed at Fermilab to characterize future superconducting magnet and HTS cables for fusion. The HFVMTF cryostat is a large double-bath vessel with a lambda plate that separates the 4.5 K normal liquid helium on the upper section from the pressurized superfluid helium at 1.9 K and 1.2 bar. The maximum design pressure of this vessel is 6.9 bar. The pressurized superfluid bath will host a 25 tons magnet with a maximum diameter of 1.4 m and a maximum length of 3 m.

Safety analysis of the lambda plate

Brookhaven National Laboratory (BNL) check valve:

- Composed of two check values
- The larger value is made of Teflon and protects the superfluid bath from over-pressure during the quench of the magnet
- CFD analysis performed to calculated the maximum pressure drop through the valve during the quench (and vacuum break)
- Maximum pressure difference of **0.41 bar**

	Res	Results of the CFD analysis of the check valve					
<image/> <section-header></section-header>				100% Open		50% Open	
		Mass flow (kg/s)	Downstream conditions	Upward force (N)	DeltaP (bar)	Upward force (N)	DeltaP (bar)
		2.09	4.21 K & 1 bar	144	0.391	1528	3.07
	Quench of the magnet	3.47	5.3 K & 2.3 bars	151.99	0.412	1610	3.23
	am 1/8" holes	1.79	7.55 K & 6 bars	28.24	0.077	305	0.61
	Vacuum break	4.21	8 K & 7.3 bars	149.42	0.392	1521	3.05
	Cool down	0.03	300 K & 1 bar	3.11	0.009	35.07	0.07

Fermi National Accelerator Laboratory

304L stainless steel 50 mm thick plate

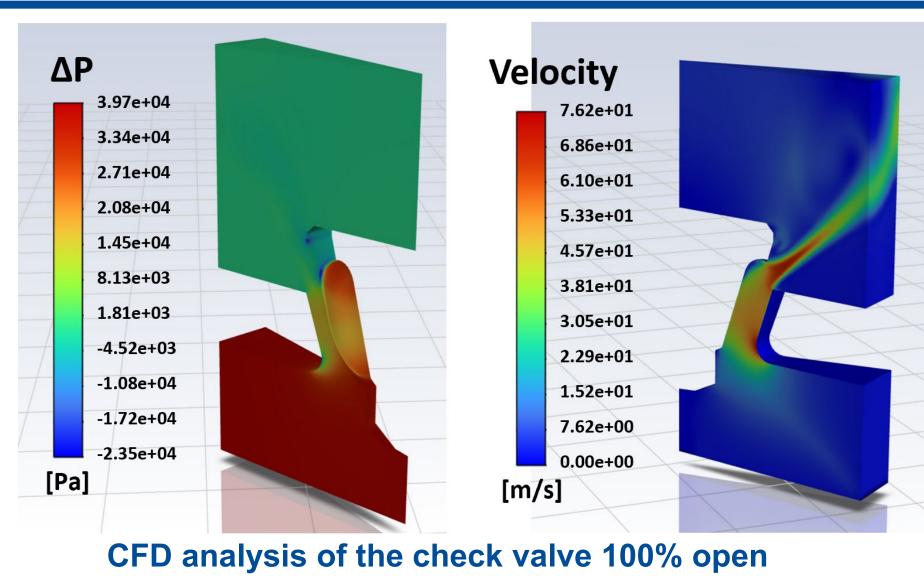
1.4 m diameter energized seal (minimum

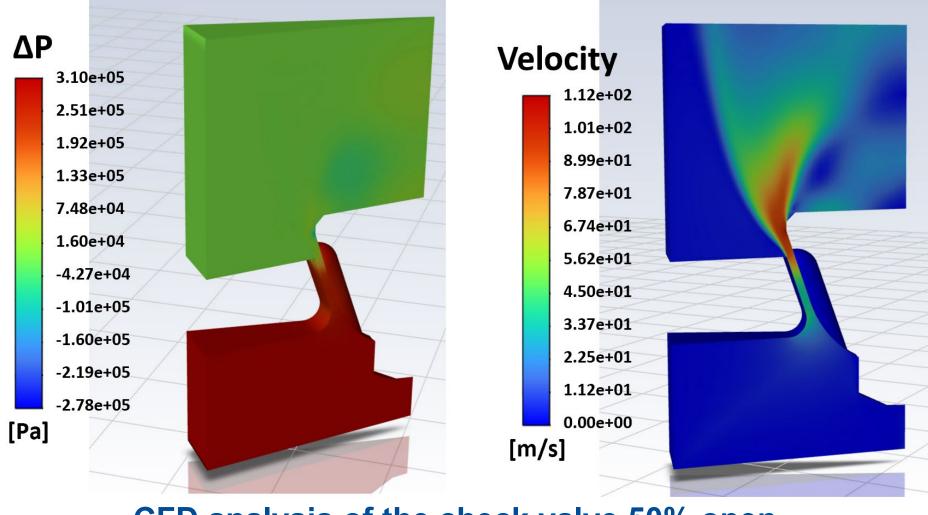
Check valve and 2 rupture disks to

Thermal analysis of the lambda plate

Lambda plate insulation:

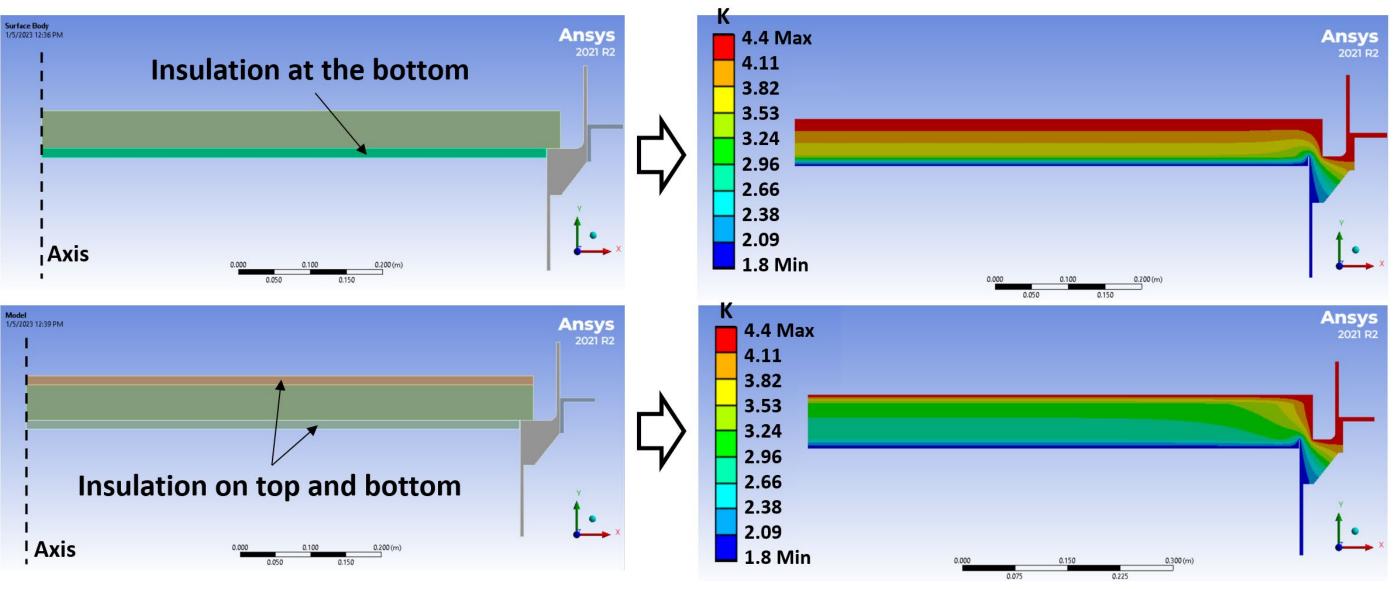
- stainless steel
- plate, on the bottom,...)


Anticryostat sealing:

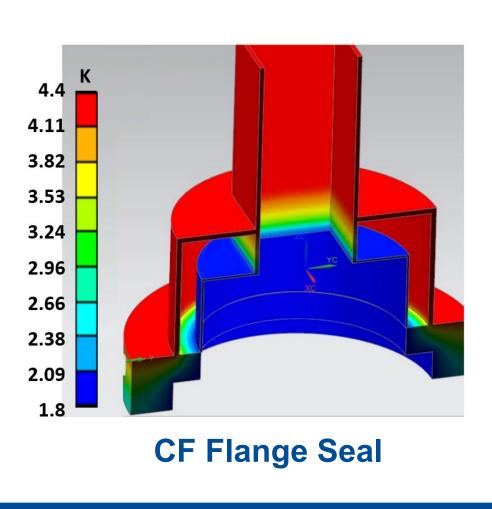

- anticryostat

PTFE Plug

1 1 **1 1** 1 1


CFD analysis of the check valve 50% open

G10 or PEEK GF30 considered - low thermal conductivity and similar thermo-contraction to


Thermal FEA performed to test multiple insulation configurations (on top of the lambda

Best configuration with the insulation on top and bottom of the lambda plate: **3.6 W** using G10 against **20 W** without insulation

Thermal FEA performed to test multiple sealing solutions for the

Best configuration using the **PTFE (Teflon®) plug** solution: **0.2 W**, against 0.33 W for the Energized seal and 0.66 for the CF flange

	Heat load on 2K bath (W)	Cooling capacity at 2K (%)
Lambda plate insulation	3.6	5
BNL check valve	0.51	0.71
1" Rupture Disk	0.78	1.08
2" Rupture Disk	2.22	3.08
3 magnet supports	0.048	0.07
4 Regular feedthrough	0.04	0.06
4 Feedthrough with current leads	5.2	7.22
Anti-cryostat seal	0.195	0.27
Total	12.59	17.49

Reverse check valve:

Spring Energized Seal

- Smaller and locate inside the other valve
- Accommodates the pressure between the two b during the cool down be-tween 4.5 K and 1.9 K
- Minimum mass flow of **76 g/s** through the revers check valve (10 g/s maximum supply)

" and 2" Rupture disk:

- Burst pressure of **1 bar**
- Maximum mass flow of 4.3 kg/s in case of a va break (induce the quench of the magnet)
- 2" rupture disk required to protect the lower (superfluid) bath during worst case scenario (vacuum break)
- 1" rupture disk required to protect the upper he bath considering 70 g/s of helium at 80 K (max mass flow through the helium supply value)

C1Po2D-05

FERMILAB-POSTER-23-143-TD

Thermal FEA of the Lambda plate

Summary of the 2K Total heat loads:

Maximum mass flow through the reverse check valve during the cooldown

	Tin (K)	Pin (bar)	Pout (bar)	Max flow (g/s)	
baths (4.4	1.2	1.1	76.5	
rse	4.4	1.2	1	105.8	
	4.4	1.2	0.9	126.4	

Required diameters for the two rupture disk

acuum	Rupture Disk	Protect the Lower Bath	Protect the Upper Bath		
	Maximum mass flow (g/s)	4250 (Vacuum break event)	70		
	Burst pressure (bar)	1	1		
elium ximum	Backpressure (bar)	6.89	1		
	Relief temperature (K)	8.3	5.1 (gas)	80	
	Required Diameter (mm)	50	7.45	20.7	

