

LCLS-II

LCLS-II Cryogenic System Instrumentation

Dayne Robinson LCLS-II Cryogenic Instrum. & Elec. Lead

CEC-IMC23

Outline

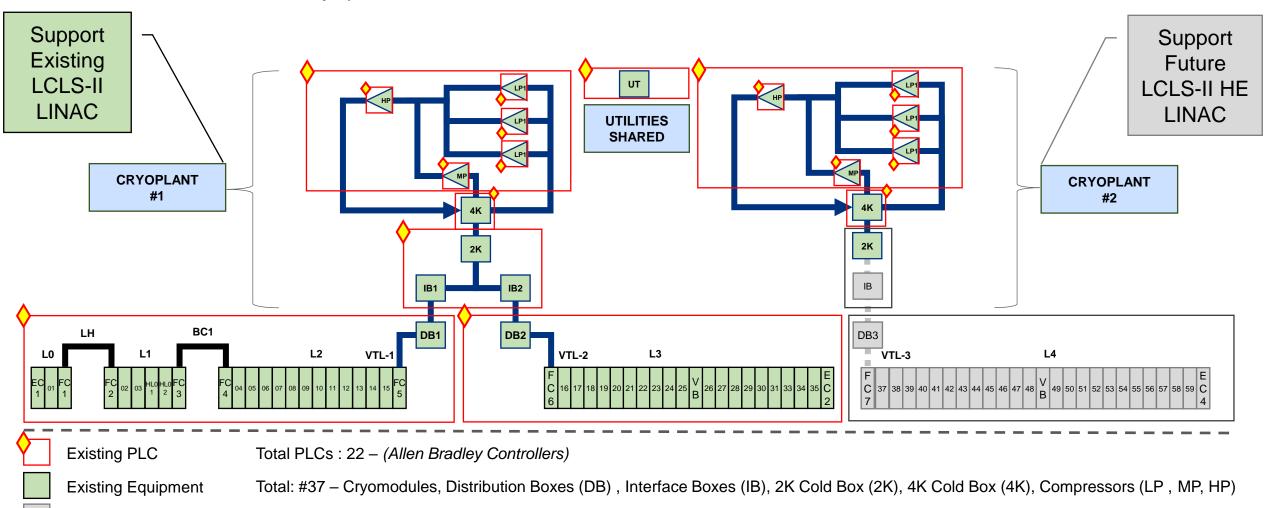
LCLS-II Control System Architecture

- PLC Selection
- PLC Number vs Remote I/O.
- Lessons Learned
- Future Improvement

• Instrumentation Selection:

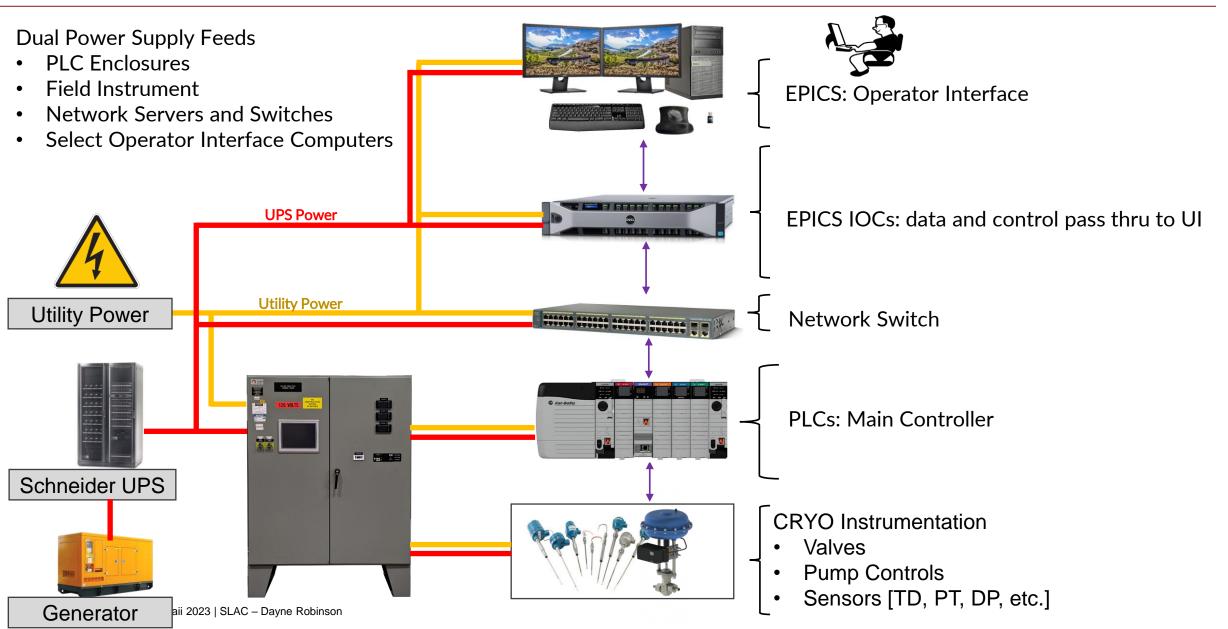
- Sensors Selection
- Lessons Learned
- Future Improvement
- Experience
- Commissioning:
 - Number of I/O
 - Strategy [Instrum List / Loop Test]
 - Schedule / Resources

Systems Overview

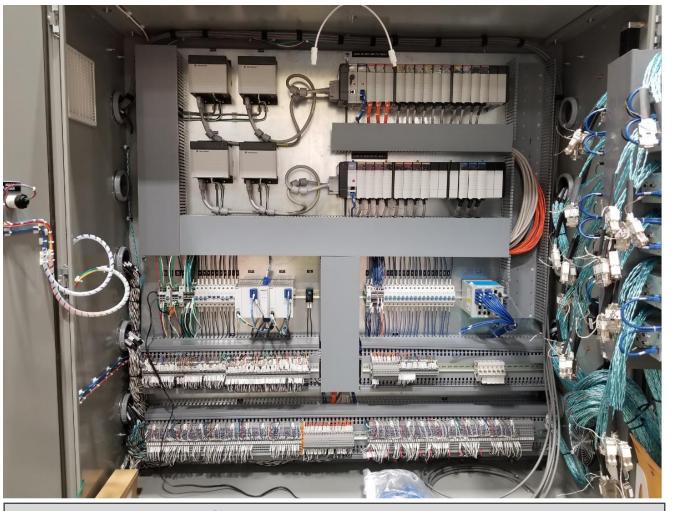


CRYOPLANT VIEW: GHe & LN2 Storages, Cooling Water and Vertical Cold Boxes.

SLAC: Cryogenic System



• 2 identical 4kW @ 2K Cryoplants exists at SLAC

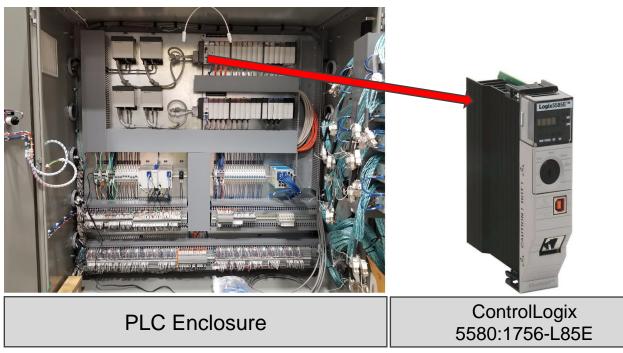

Future Equipment Total: #23 – Cryomodules, Distribution Box (DB), Interface Boxes (IB)

PLC / Instrumentation Architecture

5

PLC / Instrumentation Enclosures

PLC Instrumentation Enclosures


Instrumentation Enclosures

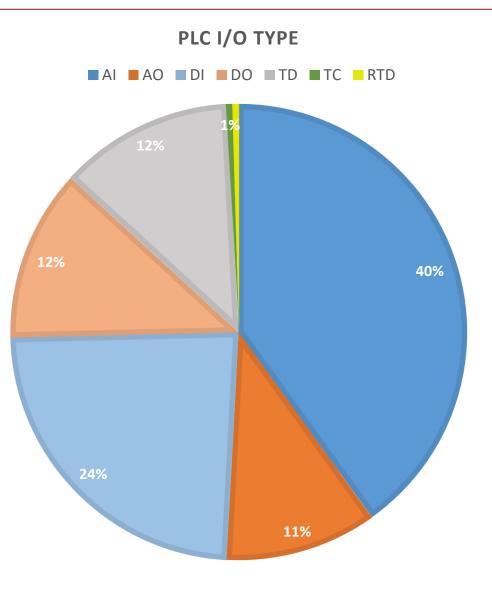
- Built to Print
- UL Listed
- Dual Power Supply [Utility & UPS]
- Redundant PLC Power Supply
- Redundant Field Instrument Power Supply
- Field Instrument
- Local Panelview Touchscreen
- Network Switches
 - PLC-PLC Controls network
 - EPICS network

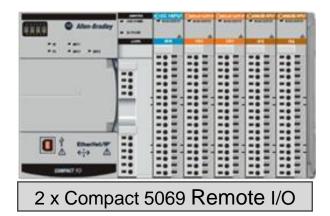
PLC / Selection

PLC Model	Application	No. of PLCs
Rockwell 1756-L81E	CP1-2K, CP1-4K, CP2-4K Cold Box, Utility, C1-GMGT, C2-GMGT	6
Rockwell 1756-L85E	CP1 2K, DB1, DB2	3
Rockwell 1756-L71	Warm Compressors	12
Rockwell 1769-L30ERM	Oil Processor	1

CryoPlant PLCs Rockwell 1756-L81E CompactLogix 1769-L30ERM Rockwell 1756-L71 Rockwell 1756-L85E

The 1756-L71, 1756-L81E/L85E all belong to the ControlLogix 5580 family. Main features of 5580:


- Most powerful Rockwell processors
- Clock speed of 2.5 GHz
- 40 MB user memory
- Support for up to 128,000 digital I/O points
- Support for up to 4,000 analog I/O points
- Built-in 1-gigabit Ethernet port
- Support for controller redundancy
- CP1 2K-CBX-PLC exchanges over 4000 Produced Consumed tags with the Cryo Distribution System for Integrated Controls.


PLC / Architecture

CryoPlant I/O Type	Count
AI	829
AO	223
DI	492
DO	252
TD	255
ТС	9
RTD	9
TOTAL	2069

Cryogenic Distribution System: ~ 4,000 I/O

PLC Enclosure

CEC-ICMC23 | Hawaii 2023 | SLAC - Dayne Robinson

INSTRUMENTATION / Selection

Instrumentation selected based on the following criteria:

- Type of measurement
- Application
- Accuracy and reliability requirements
- Safety requirements
- Cost

CryoPlant has ~50 different instruments

Top performing Instruments @ SLAC

- Pressure Transmitters
 - GE UNIK 5000
 - Rosemount DP 3051
 - Endress+Hauser
 - o Kurt Lesker 3000 Series
- Temperature Transmitters
 - Omega TX-12
 - Lakeshore DT670 Sensor
 - o Lakeshore 240-8P: RTD
 - Cryocon Temperature Monitor
- Pneumatic Valves
 - Fisher Controls DVC6200
 - Flowserve Positioner
 - o Samson 3730-3
- Level Transmitter
 - $\circ \quad \text{AMI Level probe}$
 - o Rosemount 3051 DP

INSTRUMENTATION / Pressure Sensor

- Sensor: Silicon Diaphragm [Piezoresistance]
- Pressure Transmitter: GE UNIK 5000
- Unit: bara
- PT most used > 60%

Other pressure transmitters used at SLAC:

- Dwyer
- Omega
- Rosemount

Pros	Cons
Accuracy ± 0.2%	Less Accurate Compared with Rosemount 3051
Available in Absolute and Gauge	Not as sensitive as other types of pressure sensors
Durable, rugged construction	
Less expensive compared to Rosemount	
Easy to install and use	Only ± 5% Zero Offset and Span Setting
Easy to calibrate sensor	Not HART Compatible

Recommendation:

The GE UNIK 5000 was selected for general application pressure readings: Cost Effective, Reliable, Sufficient accuracy.

INSTRUMENTATION / Pressure Sensor

- Sensor: Silicon Diaphragm [Piezoresistance]
- Pressure Transmitter: Rosemount 3051S
- Unit: bara
- Critical Application: 2K Cold Compressor Suction

Other pressure transmitters used at SLAC:

- GE UNIK 5000
- Dwyer
- Omega

Pros	Cons
Ultra High accuracy ± 0.025%	More expensive compared to GE UNIK 5000
Durable, rugged construction	
Resistant to vibration and shock	
HART Compatible	Complex, can be difficult to configure and use
Easy to calibrate sensor	

Recommendation:

The Rosemount 3051S was selected for a specific critical application. This transmitter is pricier than most however it provides ultra high accuracy, reliability and is very robust.

INSTRUMENTATION / Vacuum Pressure Sensor

- Sensor: Hot Filament Ion Gauge & Convection Enhanced Pirani Gauge
- Multi Gauge Controller: Kurt J. Lesker [MGC3200]
- Unit: mbar

	Ionization Gauge	Convectron Gauge
Range	1.330 x 10-4 – 1333 mbar	1.3 x 10-9 to 6.7 x 10-2 mbar
Resolution	1.3 X 10-4 mbar	
Durable, rugged construction	Less susceptible to mechanical shock and vibration	Dual hot filament design, rugged and compact metal construction

Other vacuum pressure transmitters used at SLAC:

- MKS
- TeleVac

Recommendation:

The KJL Ionization and Convectron Gauges along with the MGC controller are Cost Effective, Reliable, Sufficient accuracy. It is a good choice for a wide range of applications that require accurate vacuum pressure measurement.

INSTRUMENTATION / Solenoid Valves

- General-purpose valve used in a variety of applications
- Fast acting valves used for quick shut-off of PV Instrument Air only

Pros	Cons
High quality	Relatively expensive
Versatile	Not suitable for all applications
Reliable, Long Life	

Other solenoid valves used at SLAC:

- Continental Hydraulics [Compressor Load/Unload]
- Magnatrol [Compressor Oil Return]

Recommendation:

ASCO solenoid valves are known for their reliability and durability. They work well for quick shut-off of Instrument Air applications.

INSTRUMENTATION / Cryogenic Temperature Sensor

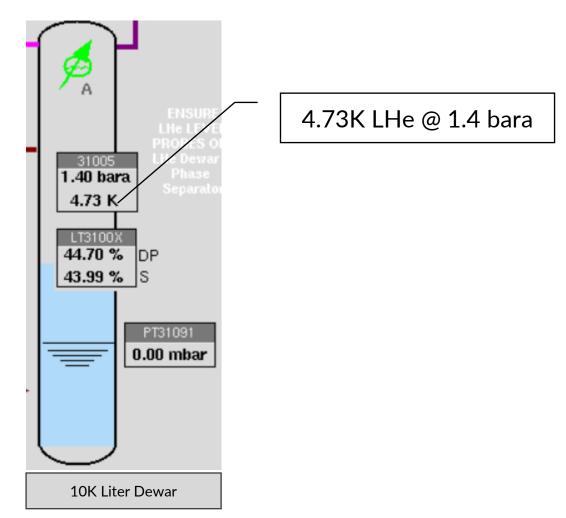
• Sensor: Lakeshore DT-670

• Temperature Controller: Cryocon 18i

DT-670 Silicon Diode

- Best accuracy across temperature range: 1.4 K to 500K any silicon diode in the industry
- Rugged, reliable designed to withstand repeated thermal cycling and minimize sensor self-heating
- Standard Curve DT-670 temperature response curve
- 4-wire diode for high precision

After more than 25 years of providing innovative instrumentation to the low-temperature industry, Cryogenic Control Systems Inc. ceased operations on February 28, 2023.


Cryo-con's product line has been discontinued and customer support for it is no longer available. The web page at www.cryocon.com will continue to provide links to product archives for the near future. These archives contain all of the information that is available.

Cryocon temperature Controller

- Supports cryogenic temperature sensor
- Consolidate signals using 8 channel input
- Ethernet connectivity allows interfacing with PLC
- Industrial grade security: Configurable firewall, HTTPS encryption and authentication

INSTRUMENTATION / Cryogenic Temperature Sensor SLA

- Sensor: Lakeshore DT-670
- Temperature Controller: Cryocon 18i

INSTRUMENTATION / Cryogenic Temperature Sensor

- Sensor: Cernox RTD
- Temperature Module: Lakeshore 240-8P

- Eight cryogenic temperature sensor inputs with specific curves
- Integrates Lake Shore Cernox[®] RTDs, and DT-670 silicon diodes
- Signals communicated to PLC via Profibus-Ethernet/IP Gateway
- Precision measurement with conversion to calibrated temperature

		2.23K @ 31 mbara
/		
	Feedcap: FC	Cryo Main Screen
Cryo Distribution		
2K Return 2.23 K	2.42 K Ave 2.36 K	2.29 K
	Rad 0.13 K RoC -0.02 K/hr	
A 4.5K Supply 3.49 K		
C LTTI 5K Supply 5.47 K		
D LTTI 7.5K Return 7.82 K		
E Shield 35K Supply 33.18 K		
F Shield 55K Return 45.11 K	Ro(-0.00	
Cryo	omodule Feedca	p

INSTRUMENTATION / Cryogenic Temperature Sensor

• Sensor: Cernox RTD vs DT-670

DT-670 Silicon Diode

Cernox:

Good sensitivity over entire range, low magnetoresistance and best choice for applications with magnetic fields up to 30T and temperatures greater than 2K. Resistant to ionizing radiation and are available in robust mounting packages.

Cernox

Silicon Diodes:

Best choice for general-purpose cryogenic use. Sensors follow a standard curve and are interchangeable. Robust mounting packages. Easy and inexpensive to instrument, wide variety of cryogenic applications such as cryo-coolers, laboratory cryogenics, cryo-gas production and space satellites.

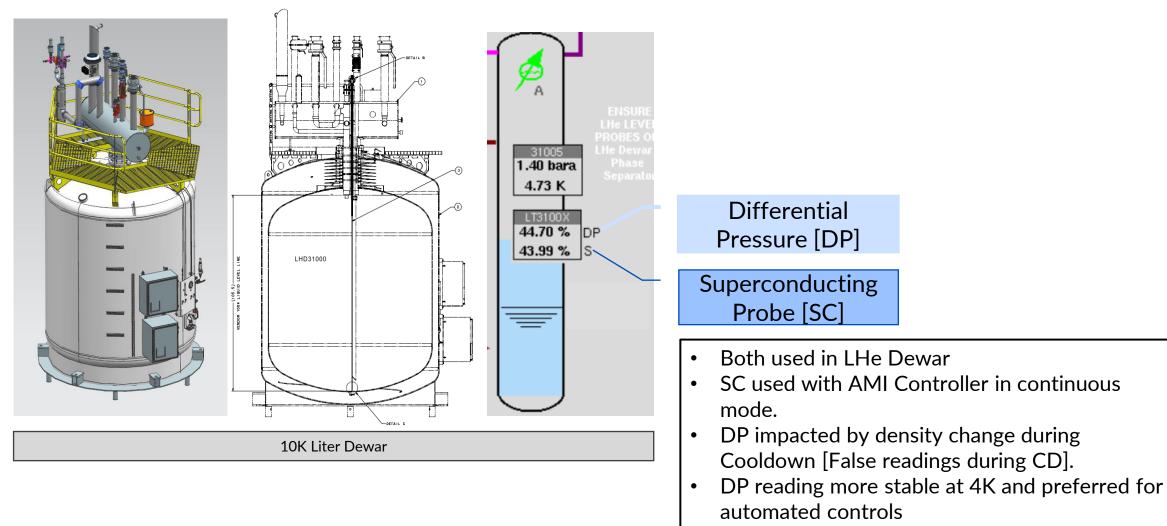
Characteristic	DT-670 Silicon Diode	Cernox
Temperature Range	1.4K to 500K	0.10k to 420K
Typical Reproducibility	± 10 mK	± 3 mK
Interchangeability	Yes [Sensor follows a standard curve]	Has a specific curve
Use in Radiation	Not recommended for B > 5 tesla. Above 60K SD package has magnetic leads	Recommended. Excellent for use in magnetic fields 1K and up SD package with non-magnetic leads.
Number of wires	4-wire for accurate sensor measurements	4-wire for accurate sensor measurements
Package	Rugged and versatile	Robust mounting packages and probes
Applications	Cryo-coolers, laboratory cryogenics	Particle Accelerators, and cryogenic systems

INSTRUMENTATION / Cryogenic Liquid Level Sensor

- Sensor: Superconducting level probe
- Level Transmitter: AMI Model 1700

- Sensor: Diaphragm Seal Differential Pressure
- Level Transmitter : Rosemount 3051

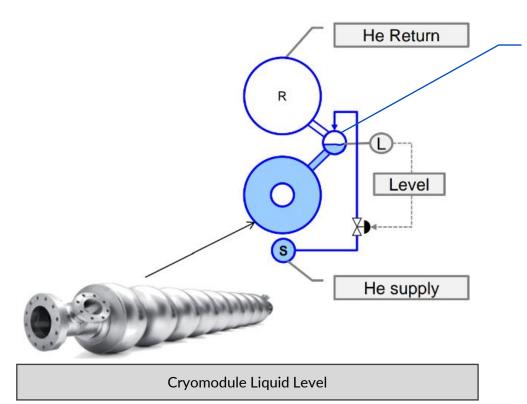
AMI Model 1700

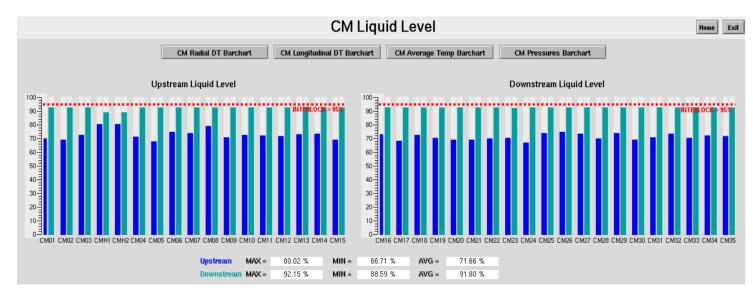

- Superconducting level sensor measures 2K or 4.2K
- Used for 10 LHe Dewar and Cryomodules
- Simplify and intuitive touch-screen user interface
- Remote operation via TCP/IP connection
- Variety of packaging options

Rosemount 3051 Differential Pressure Transmitter

- Redundant 10K Dewar Level reading using DP
 Transmitter
- DP used for large volume vessel [10K Liter Dewar]
- Reliable measurements and wide application flexibility
- Easy to configure using HART

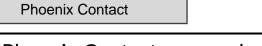
INSTRUMENTATION / Cryogenic Liquid Level Sensor




• DP reading converted to level using formulae

INSTRUMENTATION / Cryogenic Liquid Level Sensor

Superconducting Probe



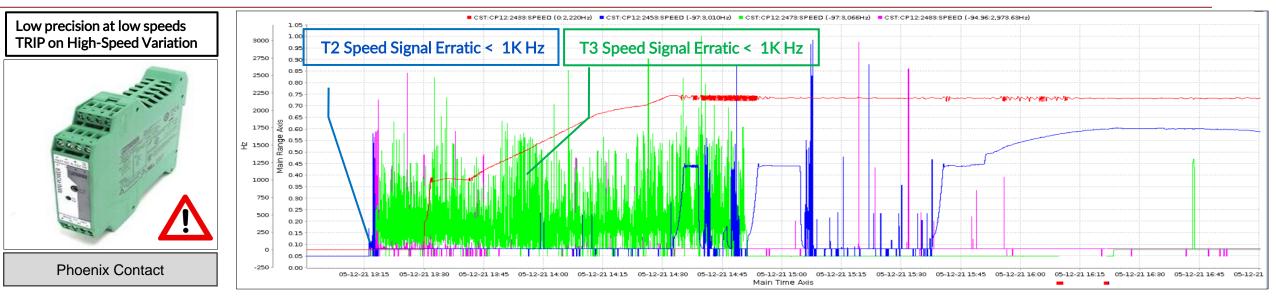
SC Probe accurate for small volume [2 liters] in Cryomodules compared with 10K Liter Dewar

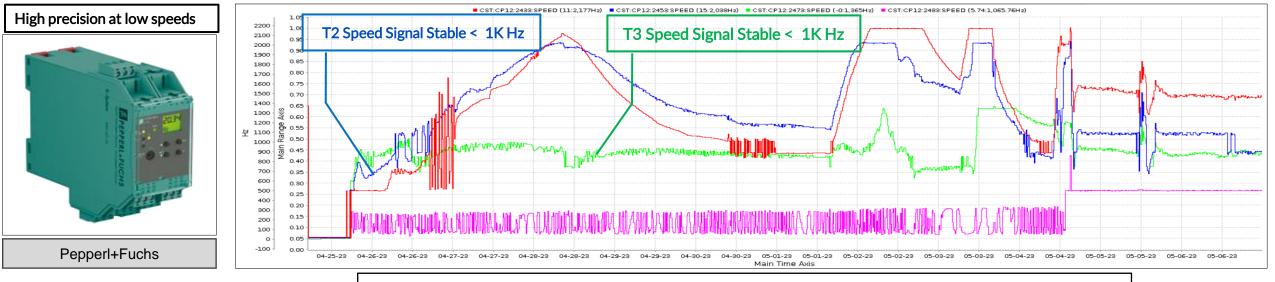
INSTRUMENTATION / Turbine Speed Sensor

Turck Rotation Speed Controllers

- Sensor: Frequency Converter
- Units: Frequency [Hz]
- Speed Sensor: Pepperl+Fuchs KFD2-UFC-1.D

- Phoenix Contact sensors has low precision at low speeds
- Turk Controller not UL Listed


- Speed Sensors are UL listed
- High precision readings at low speeds



INSTRUMENTATION / Turbine Speed Sensor

CEC-ICMC23 | Hawaii 2023 | SLAC - Dayne Robinson

Phoenix Contact sensors replaced with Pepperl+Fuchs

INSTRUMENTATION / Cryogenic Valve Actuators SLAC ACCELERATOR

- Equipment: Cryogenic Control Valve
- Flowserve Valtek, Weka
- Piston Type

Cryogenic Valves on Lower 4K Cold Box

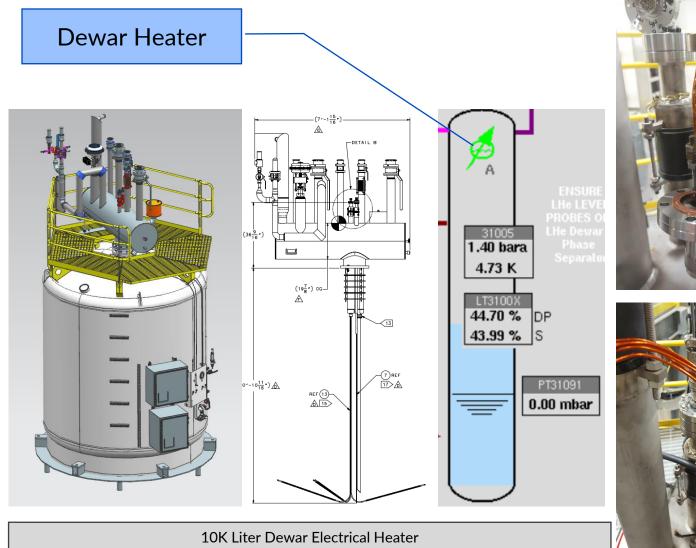
Other pressure transmitters used at SLAC:

- Fisher Controls
- Weka
- Samson

CEC-ICMC23 | Hawaii 2023 | SLAC - Dayne Robinson

Failed CRYO Valve Positioner

- Faulty Valve Positioners
 - Cleaned
 - Rebuilt
 - Replaced
- IA System blown down



Debris found in Air Filters

- Debris & Oil in Instrument Air Manifold during start-up
- Failure of numerous CRYO valve positioners
- Recommendation
 - Use filter on each valve!
 - Blow down IA System to remove contaminants

INSTRUMENTATION / Liquid Helium Dewar Heater

Issues with LHe Dewar Heater:

- Heating elements shorted together
- Heater controller fuses blown repeatedly
- Solution:
 - Replaced heaters
 - Insulated heater wires

INSTRUMENTATION

Future:

- Develop and implement I&C Program and Training, Critical spares inventory management
- Manual Valves readback
 - Adding position feedback sensor to manual valves which currently no feedback
- Add Vibration Monitoring on Compressor Station
- Automation of Helium Purifier
- Selectively implement redundant sensors to improve CRYO System robustness

Difficult to determine position of manual valve

Helium Purifier

Manual valves can be automated on purifier

COMMISSIONING / Instrumentation

What we did well:

Careful planning of Pre-Commissioning:

- Detailed Instrumentation List
- Detailed Test Plan
- Instrument Calibration
- Careful verification [Loop Test]
- Documentation

Resources:

- 1 Instrumentation Engineer
- 3 Technicians
- ~2000 Signals
- 10 15 minutes

	Plans and Procedures Document Title: HRS.CT.HD-OM.SLAC-Instrument Loop Test			
	Document Number: LC	Document Number: LCLSII-4.5-PP-1545-R0 Page 12 of 12		
4.2 INSTRUMENT WORKS	HEET			
TECHNICIAN		DATE		
TAG NAME		PLC NAME		

WIRING DWG #

ENCLOSURE DWG #

SERIAL NUMBER		P&ID #	
CONFIGURATION COMPLETED?		INSTRUMENT TUBING CHECKED?	
CALIBRATION STANDARD	MANUEACTURED MODE		

CALIBRATION STANDARD MANUFACTURER, MODEL, SERIAL NUMBER Druck DPI 880 / Fluke 787-789 / Hart 475/ EPICS

INSTRUMENT RANGE

MODEL NUMBER

APPROXIMATE TEST POINT	STANDARD READING Calibrator	TEST TRANSDUCER READING	TEST TRANSDUCER READING	TEST TRANSDUCER READING
	Druck/Fluke	Fluke787/789	EPICS	Local HMI
0% OF CAL RANGE				
25% OF CAL RANGE				
75% OF CAL RANGE				
100% OF CAL RANGE				

	COMMENT
-	

The only official copy of this file is located in the LCLS-II Controlled Document Site Before using a printed/electronic copy, verify that it is the most current version.

What worked well:

- Lakeshore DT-670 and Cryocons provide reliable temperature readings
- AMI Level probes work well in Cryomodules with small height [~100mm] of LHe
- ROSEMOUNT 3051-DP for 10,000L LHe Dewar Level
- GE UNIK 5000

Issues during commissioning:

- Intermittent spikes on temperature signals caused nuisance TRIPS. A time delay was added to PLC code
- Liquid Level Heaters in the Dewar failed and had to be replaced
- Endress Hauser DP [0 -100mbar] used for flow calculation was undersized for the application and was replaced with Rosemount 3051 transmitters [0 600mbar]
- Installed Dual DP Transmitters to better monitor high and low ranges for critical flows [4K & LTTI Supply]
- Moisture due to condensation in outdoor instrument cabinets

Summary

- LCLS-II Cryogenic Instrumentation was successfully loop tested and accurately documented
- Loop Tests detected ~ 10% of total installed instruments had issues related to mis-wiring errors
- Choose high quality instruments for reliability
- Develop and implement I&C Program and Training at SLAC
- Plan spares inventory management at an early stage [10% spare].
- Categorize and label sensors in the field: monitoring, alarms, interlocks, trips and control loops.
- Selectively implement redundant sensors to improve CRYO System robustness

Thank you

