

DEVELOPMENT OF ADDITIVELY MANUFACTURED CRYOGENIC HEAT EXCHANGERS FOR HYDROGEN-ELECTRIC AIRCRAFT PROPULSION

11.07.2023 | DR.-ING. MARCO VIETZE | CEC/ICMC 2023 | C2OR2B-03

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Project "AdHyBau" → hydrogen-electric propulsion system for aviation

g Design	•	Efficient coil design and optimized cooling systems through additive manufacturing for high power density electric machines ► 10 kW/kg								
Engineering	•	Cryogenic hydrogen as cooling medium and energy source								
Engii	•	New lightweight design of hybrid structures with fiber reinforced composites and additively manufactured metal components								

- Digitalization in product development ► design and simulation process based on a digital twin of electric machines
- Investigation of cryogenic material properties of additively manufactured test specimens

Simulation

Materials

• Influence of hydrogen on additively manufactured materials

SIEMENS

Project partners at CEC/ICMC 2023

Date Time	Room	Title	Speaker	Session ID	
Monday 9:30 AM	Emalani 320	Additive Manufacturing and hybrid materials in high power	Ch. Weidermann	J1 Or 1A	
Monday 5:45 PM	Emalani 320	New concept for cryogenic gaseous hydrogen-cooled lightweight electric engine	M. Pohl	M1 Or 3G	
Tuesday 11:30 AM	315	Development of additively manufactured cryogenic heat exchangers for hydrogen-ele	M. Vietze	C2 Or 2B	
Wednesday 10:30 AM	318	Cryogenic material testing with gaseous hydrogen for hydrogen-electric aircraft prop	F. Ebling	M3 Or 1A	
Wednesday 11:00 AM	318	Cryogenic thermo-physical properties of additive manufactured	KP. Weiss	M3 Or 1A	
Wednesday 11:20 AM	318	Additive Manufacturing of Cryogenic Materials	Olaf Rehme	M3 Or 1A	

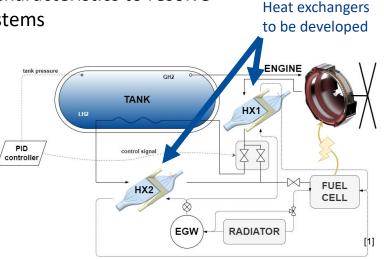
"Development of additively manufactured cryogenic heat exchangers for hydrogenelectric aircraft propulsion" Marco VIETZE & Cenk EVRIM

AGENDA

- System analysis & requirements derivation for subsystems and components
- Development of analytical optimization tool for heat exchanger design
- In-depth design and analysis loops
- Outlook: cryogenic component testing

Summary

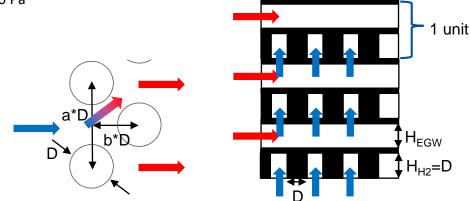
This work is supported by the Federal Ministry for Economic Affairs and Climate Action of the Federal Republic of Germany. Grant-No.: 20M1904B.


Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

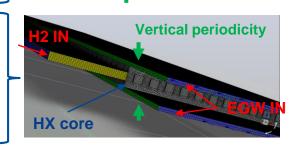
System analysis & requirements derivation for subsystems and components

- ID thermo-fluidic modelling of relevant subsystem characteristics to resolve interactions and interdependencies between subsystems
- Analyze and derive requirements for subsystems and components from...
 - Mass flow rates
 - Energy transport
 - Pressure & temperature development

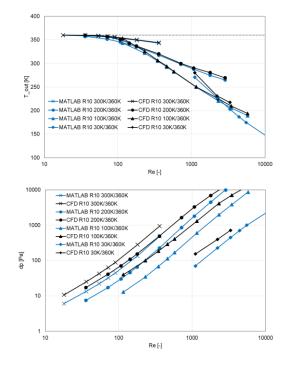


Development of analytical optimization tool for heat exchanger design

- Additive manufacturing allows for advanced internal heat exchanger geometries
- Analytical method for heat transfer and pressure drop based on lateral incident flow on tube bundles
- Optimizer applied to analytical method
 - Target function: HX core mass
 - Constraints
 - Minimum H2 outflow temperature \rightarrow > 290 K
 - Maximum allowable pressure in H2 core \rightarrow < 1000 Pa
 - Variables
 - <u>Pin/tube diameter</u> and <u>channel height</u>
 - <u>Lateral</u> and <u>depth distance</u> of pins
 - Number of pins per row and number of rows
 - *<u>Number of units/plains</u> to build a stack*

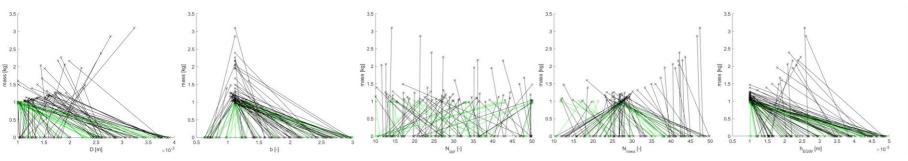


Development of analytical optimization tool for heat exchanger design


- Two-step validation with CFD
 - 2-directional periodic unit cell
 - Only H2 as medium
 - Fixed wall temperature
 - 1-directional periodic unit cell (one plane of the HX including primary and secondary side)
 - Cross flow arrangement of H2 and EGW
 - Heat conduction through HX-wall is being considered

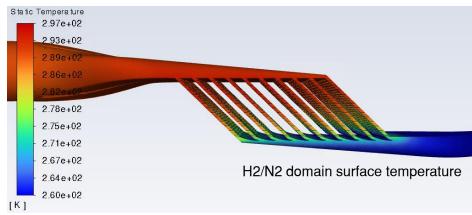
- Results for various temperature levels and flow velocities show ...
 - Good agreement of fluid exit temperature prediction
 - <u>Error less than 2% in relevant flow regime</u>
 - Acceptable agreement of pressure drop prediction
 - Predictable difference can be accounted for with correction factor

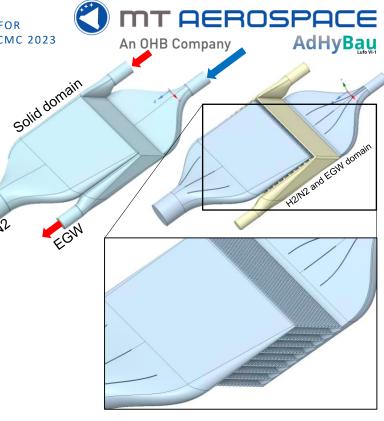
Lateral and vertical periodicity



Development of analytical optimization tool for heat exchanger design

- AM parameter study for to establish manufacturing limits for...
 - min. pin diameter
 - min. pin distance
- Manufacturing limits constitute boundaries for optimization
- Optimization results show:
 - Some variables have a distinct global minimum (e.g. D, b, H_{EGW})

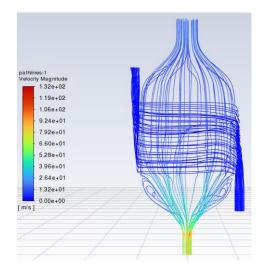

Some variables have no distinct global minimum, as they interact (e.g. trade *pins per row* for *number of units*)



DEVELOPMENT OF ADDITIVELY MANUFACTURED CRYOGENIC HEAT EXCHANGERS FOR HYDROGEN-ELECTRIC AIRCRAFT PROPULSION | DR.-ING. MARCO VIETZE | CEC/ICMC 2023

In-depth design and analysis loops

- CFD analysis with entire model
 - around 126 mio. elements
 - Three domains (H2, EGW, Ti)
 - Material data of Ti6Al4V provided by KIT
 - Temperature dependant material and fluid data
 - Four H2 cases (system analysis), one N2 case (cryo-test)
 - Turbulence model: κ-ω SST



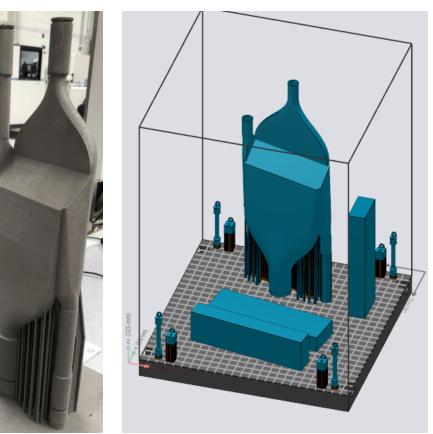
In-depth design and analysis loops

- Predictions of analytical method are met
 - T_{H2.OUT} of all cases are at or above requirement
 - Prediction error of analytical tool is < 3%
 - Pressure drop in core within limits (working pressure 5 bar)
 - Total incl. intake and outlet:
 - HX core/layer only:

- < 2000Pa for gas domain
- < 1000 Pa for gas domain
- Minimum surface temperature (T_{min} = 238K) on EGW side is not undershot

PIN 10/32 Ti64 H2					CASE2 (Ti64)		CASE3 (Ti64) max. H2 mass flow			CASE4 (Ti64)		
			max. heat transfer		cruise po		<u>max. nz ma</u>			min. H2 inlet tem		
			H2	EGW	H2	EGW	H2	EGW		H2	E	EGW
dp_total		Pa	939,3	12649,0	471,6	13417,2	14	77,5	13993,3		6,5	14106,4
dp_layer		Pa	592,2	2420,0	312,5	2942,0	8	09,1	3340,0		3,8	3405,0
Т	IN	К	213	315,5	209	304,7	2	59,8	296,9		30,0	295,0
Т	OUT	К	303,6	311,9	299,9	302,65	2	90,5	295,6	2	95,0	294,7
T analytical vs. CFD	OUT	%	-2,6%	0,7%	-1,8%	1,4%	-(),8%	0,2%	-:	2,7%	-2,5%
Т	MIN	К	212,95	<u>242,29</u>	208,96	<u>239,77</u>	25	9,77	<u>269,46</u>	30	,001	<u>257,477</u>
m_dot	IN	kg/s	0,00259375	0,3125	0,0016875	0,3125	0,003	875	0,3125	0,0000	375	0,3125
Q_dot=q*A		W	<u>3105,7</u>	2963,5	2027,3	1934,5	13	04,7	1245,0	2	99,5	285,9

Outlook: cryogenic component testing


- Setup with cryogenic nitrogen to test HX at different
 - Mass flow rates
 - Inlet temperatures
 - Inlet pressures
- Measure
 - Temperature increase of gas
 - Pressure drop of gas
 - Potential particles originating from the HX
- pezifikation Anschluss: 1/2 Gasförmiger Stickstoff ca.778 ten: 1793 Eur aschluss: DN25 sten: 6035 Euro ikation Druck: 6-10 ba Specifikation Filter: 100 un peratur: ca. 77 - 250 ion Castor Behälter: Liter 60 Spezifikation Flow: 6-50 g/s Faktor 1/700 Rijssig/Gas Dichte 0.807 g/ml bei 77k wagelok Verrohrung ohne bzw. mit Iso sten: geschätzt 3000 Fur uss: DN15 hzw. SW12mm und DN25 h M Profil mit Rollen zum Mobilen iten: geschätzt 3000 Euro 60 mm ITEM Brofi
- Results will be used to validate analytical model and CFD simulations

DEVELOPMENT OF ADDITIVELY MANUFACTURED CRYOGENIC HEAT EXCHANGERS FOR HYDROGEN-ELECTRIC AIRCRAFT PROPULSION | DR.-ING. MARCO VIETZE | CEC/ICMC 2023

Summary

- Requirements for heat exchanger derived from system analysis
- Analytical heat exchanger design tool developed and verified with CFD
 - Shows good and predictable results
- Design limits established e.g. by manufacturing tests
- Optimization of geometry in accordance with requirements
- CFD simulation of detailed design
 - Minor adjustments implemented
- Heat exchanger manufactured
- Preparations for cryo testing initiated

GERMANY

MT Aerospace AG

Franz-Josef-Strauß-Straße 5 86153 Augsburg Germany +49 (0)821 505-01

FRENCH GUIANA

MT Aerospace Guyane S.A.S.

Résidence Mme Paille 25-27, rue Branly 97319 Kourou Cedex/France +594 (0)594 3275 90