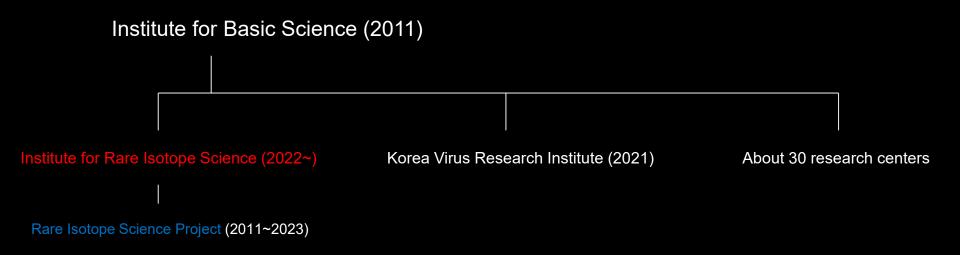


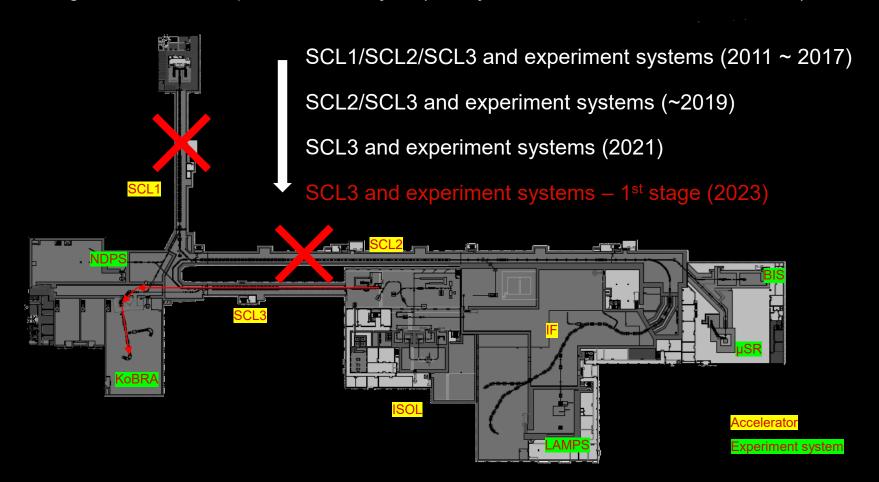
C3Or3A-03 The first cooldown of SCL3 cryogenic system

<u>Sungwoon YOON</u>, T. KI, J. YOO, M. LEE, T. MEYER, E. BODIN, K. DAOUDI Honolulu, July 12th (Wed.), 2023

Content


- 1. Introduction
- 2. Installation
- 3. Operation; cooldown
- 4. Issues
- 5. Conclusions

IntroductionRISP and RAON

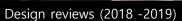

"Rare Isotope Science Project" belonged to "Institute for Rare Isotope Science" in 2022 and the 1st stage of this project was finished successfully in 2023 in Daejeon, S. Korea.

IntroductionRISP and RAON

The goal of Rare Isotope Science Project (Heavy ion SC linear accelerator, RAON)

Installation

Buildings ready (2020)



Installation

Cryogenic system I (2018-2023)

Manufacture (2019 -2020)

Transportation (2020 -2021)

Installation (2020 -2021)

Inspection (2020 -2022)

1st cooldown (2022 -2023)

Installation

Cryogenic system II

RAON cryogenic system

Cryogenic plants (CP)

- 1 CP for SCL3 (4.2 kW cooling power at 4.5 Keq),
- 1 CP for SCL2 (13.5 kW cooling power at 4.5 Keq),
- 2 K circuit, 4.5 K circuit, and 35-55 K circuit

Helium management system (HMS, recovery system)

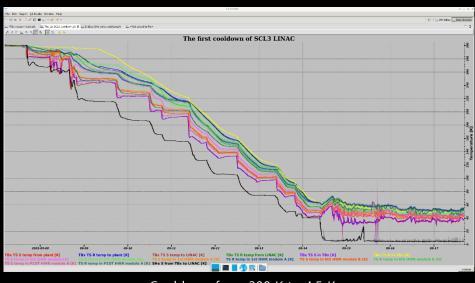
- 1 purifier with 3 recovery compressors at 30 barA,
- 1 gas bag with 2 types of recovery heaters,
- 1 LN₂ system to supply GN₂ and LN₂,
- 8 helium storages (8 x 250 m³)

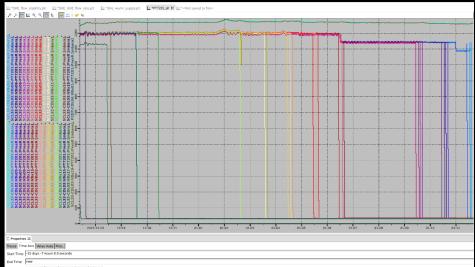
Cryogenic distribution system (CDS)/cryomodules (CM)/cryostats

- 1 distribution box (TBx), C3Or4C-05
- 107(44) valve boxes (VBx) and 2(1) end boxes (EBx)
- 104(55) CM and 14 magnet cryostats
- 1 cooling system for high temperature SC magnets (40 K)

Operation

Cooldown


2022 2023


• Sep. 7th – Oct. 26th Cooldown under 4.5 K • Nov. 24th – Jan. 11th 1st cooldown under 2 K

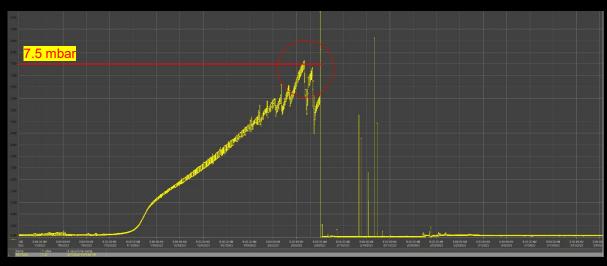
• Feb. 21st – 24th 2nd Cooldown under 2 K • Apr. 21st 3rd Cooldown under 2 K • Jun. 8th – 31st Warmup

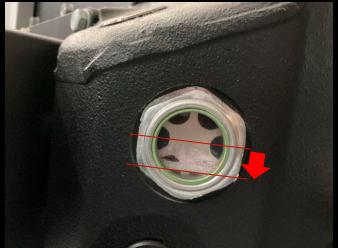
• Sep. 21th – Oct. 7th Beam commissioning (6 QWR) • Nov. 4th – Dec. 16th Beam commissioning (22 QWR) • Feb. 27th – Jun. 7th

Beam commissioning (SCL3)

Cooldown from 300 K to 4.5 K

Cooldown from 4.5 K to 2.05 K


Operation Availability



Total 2.05 K operation times, 3,133 hours

- 4 K operation time due to failures, 401 hours
 - Issue on inlet filter of cold compressors (air inleak): 385 hours
 - Issue on oil loss of process vacuum pumps : 16 hours

Availability ~ 87.2%

Differential pressure [mbar] of inlet filter of cold compressors string

Operation

Heat loads

SCL3 heat loads

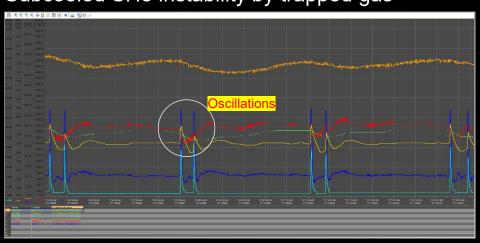
	Expected	Design*	Real**	l** Remark	
Total thermal shield	6,781 W	10,172 W	7,454 W	CBx+TBx+CDS+CM	
QWR CM*** 4 K	17.1 W	25.7 W	11.7 W	Except for #5, #6, #14, #21	
HWR CM A*** 4 K	3 W	4.5 W	5.1 W	Except for #1, #12	
HWR CM A 2 K	9.4 W	14.1 W	9.3 W	Except for #1	
HWR CM B*** 4 K	5.0 W	7.5 W	8.7 W	Except for #11	
HWR CM B 2 K	17.3 W	26.0 W	9.79 W	Except for #11	

^{***** 19} HWR cryomdoules B

^{*} SCL3 cryogenic plant process design for RAON (2019)

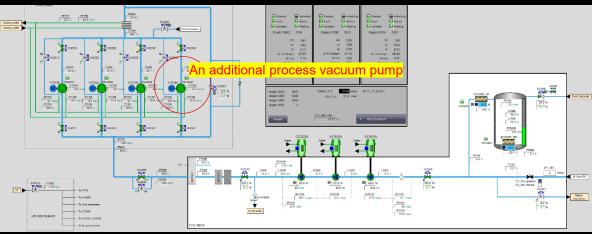
^{**} Average values, leak of JT valve not considered

^{*** 22} QWR cryomdoules


^{**** 14} HWR cryomdoules A

Issues

Cryogenic refrigeration system parts I

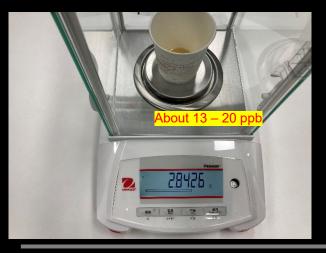


Subcooled SHe instability by trapped gas

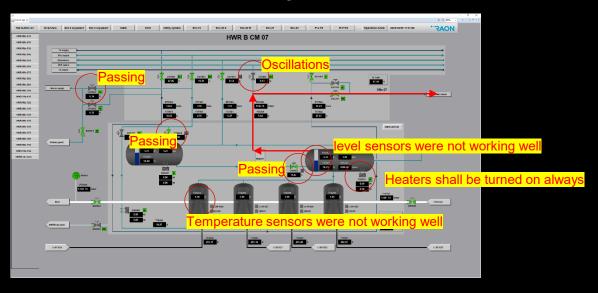
Heat inleak (or warm gas inleak) on VLP return line

Issues

Cryogenic refrigeration system parts II


Icing on 2nd and 3rd turbines

Oil check at 3rd coalescer



Issues

Cryogenic distribution system parts

Thermo acoustic oscillation at 4.5 K

Cold leak (process line to vacuum chamber) – 1 cryomodule

Sensor problems – Temperature sensor, level sensor

Leakage from valve seats

Conclusions

SCL3 was cooled down under 2.05 K successfully, January, 2023.

Ar⁹⁺ stable ion beams were accelerated and delivered to KoBRA.

KoBRA found some rare isotope ion beams, such as ¹⁴Be and ¹¹Li.

SCL3 cryogenic system was warmed up to 297 K in June, 2023.

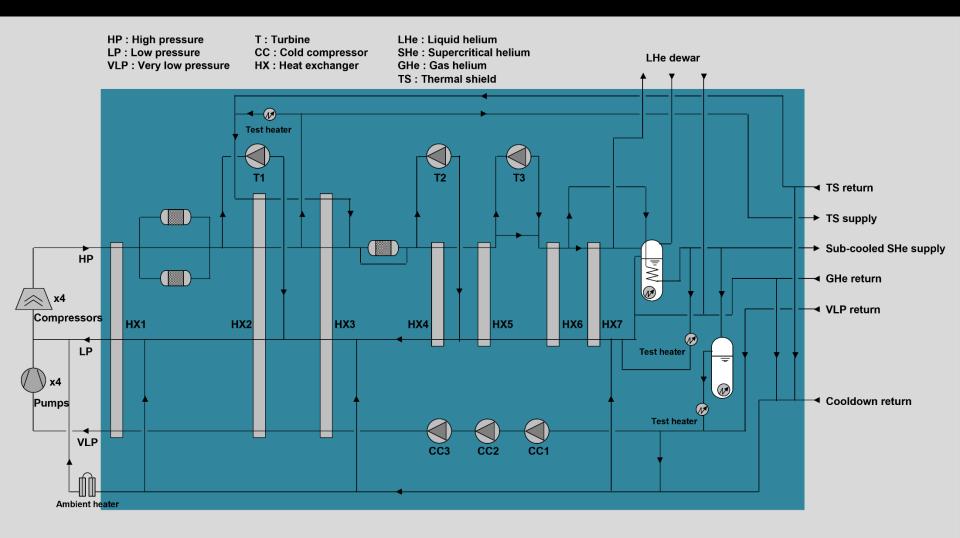
Availability of the cryogenic system is about 87%.

We have some issues but we believe that we will solve them with suppliers.

Special thanks to

Cryogenic system operators,

ESS, ITER, DESY, CEA, CERN, JLab, Fermilab, SNS, FRIB, TRIUMF, KEK, SHINE, IHEP, PAL, KFE, HYE, POSCO E&C, and ALAT



Mahalo Nui Loa

SCL3 cryogenic plant PFD

Appendix SCL3 cold end conditions

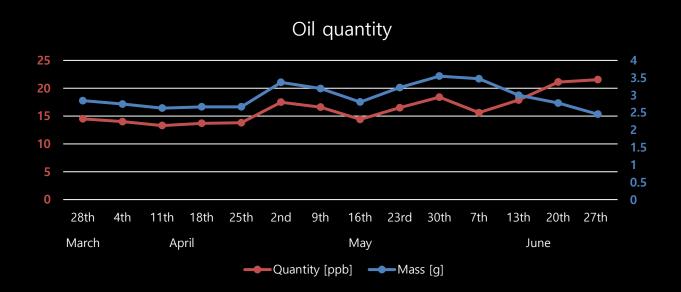
		Unit	Mode	2.05 K	4.5 K	35 – 55 K	Remark
From cold box	Pressure		Nominal	-	3.0	Max. 15	
			Beam commissioning	-	3.0	Max. 15	
		bar	Turndown	-	3.0	Max. 15	
			4.5 K standby	-	3.0	Max. 15	
			TS standby	-	-	Max. 15	
	Temperature	К	Nominal	-	4.5	< 35	
			Beam commissioning	-	4.5	< 35	
			Turndown	-	4.5	< 35	
			4.5 K standby	-	4.5	< 35	
			TS standby	-	-	< 35	
	Mass flow rate		Nominal	-	82.4	> 95.3	
			Beam commissioning	-	51.5	> 95.3	
		g/s	Turndown	-	36.4	> 95.3	
			4.5 K standby	-	37.8	> 95.3	
			TS standby	-	-	> 95.3	
			Nominal	< 0.032	1.25	$\Delta P > 0.5$	
To cold box	Pressure	bar	Beam commissioning	< 0.032	1.25	$\Delta P > 0.5$	
			Turndown	< 0.032	1.25	$\Delta P > 0.5$	
			4.5 K standby	-	1.25	$\Delta P > 0.5$	
			TS standby	-	-	$\Delta P > 0.5$	
	Temperature	К	Nominal	> 4.5	> 4.8	$\Delta T > 20$	
			Beam commissioning	> 5.3	> 4.9	$\Delta T > 20$	
			Turndown	> 7.1	> 5.0	$\Delta T > 20$	
			4.5 K standby	-	> 5.5	$\Delta T > 20$	
			TS standby	-	-	$\Delta T > 20$	
	Mass flow rate		Nominal	33.7	48.7	> 95.3	
		g/s	Beam commissioning	18.3	33.2	> 95.3	
			Turndown	9.3	27.1	> 95.3	
			4.5 K standby	-	37.8	> 95.3	
			TS standby	-	-	> 95.3	
Power			Nominal	894	1,038	10,172	
		W	Beam commissioning	566	750	10,172	
			Turndown	375	637	10,172	
			4.5 K standby	-	1,012	10,172	
			TS standby	-	-	10,172	

@ SCL3 cryogenic plant process design for RAON (2019)

AppendixHelium and nitrogen

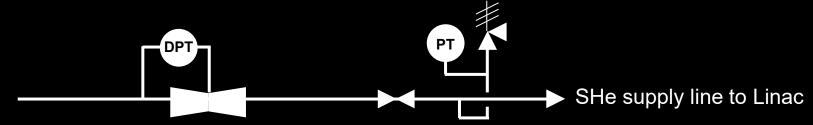
Total helium for SCL3 operation is about 1,020 kg.

- It is not easy to measure loss of the helium gas in this moment.

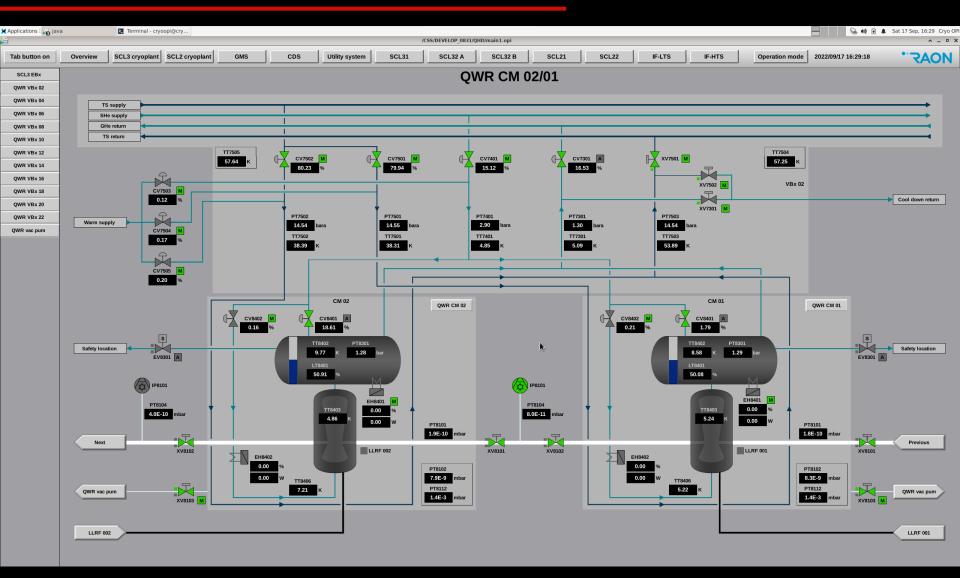

We used 165 tons of LN2.

- Most of them were used for the external purifier.

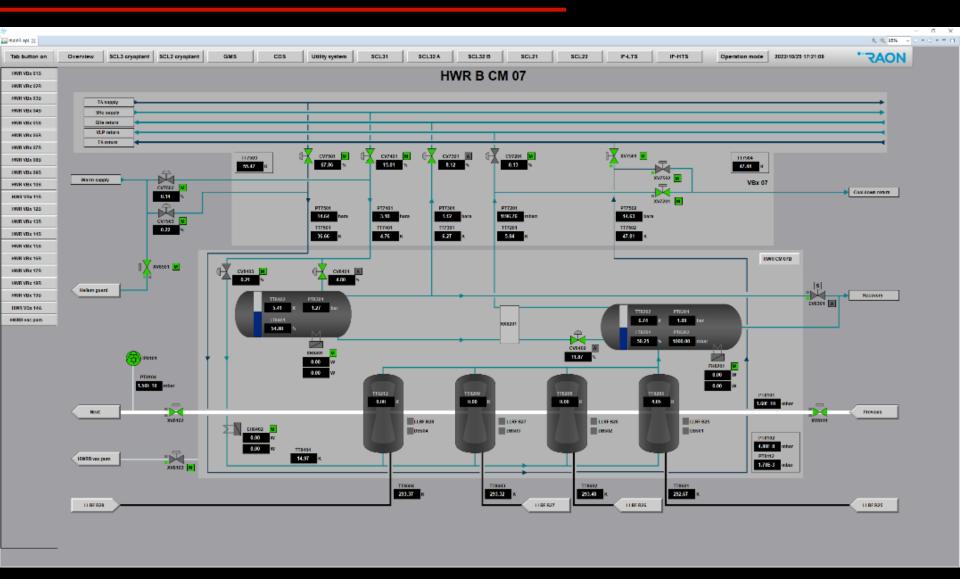
Quantity of oil at 3rd coalescer



Pressure fluctuation of SHe supply line



GUI for cryomodules – QWR CM



GUI for cryomodules – HWR CM B

