

Low-noise thermal shielding around the cryogenic payloads in the Einstein Telescope

L Busch¹, G Iaquaniello², P Rosier², M Stamm¹ and S Grohmann¹ ¹Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany ²Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

CEC/ICMC 2023 Honolulu July 9-13

www.kit.edu

The Einstein Telescope (ET)

12 July 2023 L Busch, G laquaniello, P Rosier, M Stamm and S Grohmann

2

The Einstein Telescope

The Einstein Telescope (1/2)

Image: Nikhef (annotated)

12 July 2023 L Busch, G Iaquaniello, P Rosier, M Stamm and S Grohmann

3

The Einstein Telescope

The Einstein Telescope (2/2)

Figure: Hild et al., 2012

Nested detectors

- 3x LF-interferometer ($f \approx 3$ Hz to 30 Hz)
- **3** 3x HF-interferometer ($f \approx 30$ Hz to 10 kHz)
- Sensitivity improvement $\Delta S < 10^{-3}$ @ 3 Hz compared to 2.5G detector (KAGRA)
 - > Strain target c. 10^{-23} Hz^{-0.5}

Each ET-corner:

- 4 sensitive mirrors to be cooled at 10 ... 20 K
- Stringent constraints on thermal shield vibrations

The Einstein Telescope

Low-noise thermal shielding around the cryogenic payloads in the Einstein Telescope

L Busch, G Iaquaniello, P Rosier, M Stamm and S Grohmann

ET-LF cryostat shielding structure

12 July 2023 L Busch, G Iaquaniello, P Rosier, M Stamm and S Grohmann

5

ET-LF cryostat structure

- \ge 3 thermal shields (active + passive)
- Inner shield hosts:
 - Ø Mirror: up to 600 mm
 - Ø Payload: up to 1250 mm
 - Total payload length: c. 2.5 m [1]
 - Payload heat link vibration isolation system
 - Min. dimensions of innermost shield:
 Ø 3.0 m, c. 3.8 m height

[1] Koroveshi X *et al.*, 2023. Cryogenic payloads for the Einstein Telescope (arXiv:2305.01419 [astro-ph.IM])

Low-noise thermal shielding around the cryogenic payloads in the Einstein Telescope

L Busch, G laquaniello, P Rosier, M Stamm and S Grohmann ET-LF shielding structure

ET-LF cryostat structure

Cooling of inner shield with **<u>He-II</u>**:

- Quiet cooling at 2 K via conduction \checkmark in steady-state
- Sufficient cooling power provision by \checkmark integration in helium infrastructure [2]

[2] Busch L and Grohmann S, 2022 IOP Conf. Ser.: Mater. Sci. Eng. 1240(1) p. 012095

Low-noise thermal shielding around the cryogenic payloads in the Einstein Telescope

7

L Busch, G Iaquaniello, P Rosier, M Stamm and S Grohmann

ET-LF shielding structure

ET-LF 2 K-shield geometry concept

L Busch, G Iaquaniello, P Rosier, M Stamm and S Grohmann ET-LF shielding structure

Steady-state thermal modelling

12 July 2023 9 M Stamm and S Grohmann

L Busch, G Iaquaniello, P Rosier,

Thermal modelling

Steady-state thermal modelling

10 12 July 2023 L Busch, G I M Stamm ar

L Busch, G Iaquaniello, P Rosier, M Stamm and S Grohmann Thermal modelling

Transient cool-down:

Pre-cooling: forced convection with sc. helium

He-II condensation into pre-cooled shield

1112 July 2023L Busch, G laquaniello, P Rosier,
M Stamm and S Grohmann

He-II condensation into the pre-cooled shield

1D-model:

Model aim:

Approximate He-I \rightarrow He-II conversion velocity incl. temperature profile evolution

Key characteristics:

Differential equation-based

 $T < T_{\lambda}$

- Conduction of heat to reservoir through A_{He} only
- Thermal mass of shield considered via A_{shield}
- Ideal solid-to-liquid heat transfer
- Implicit numerical scheme (Crank-Nicolson)
- Conduction of heat through A_{He} and A_{frame}
- $x_{\lambda}(t)$ implemented via moving boundary condition

 $T > T_{\lambda}$

Low-noise thermal shielding around the cryogenic payloads in the Einstein Telescope

L Busch, G Iaquaniello, P Rosier, M Stamm and S Grohmann Thermal modelling

He-II/He-I temperature profile results

- > He-II phase front propagates through the shield frame $(L_{\text{channel}} \approx 6 \text{ m})$ in c. 200 s
- Complete temperature gradients in He-I region occurs within only around 10 mm
- Significant gradients in He-II region only in phase front vicinity

Thermal modelling

Modal and harmonic response analysis

14 12 July 2023 M Stamm and S Grohmann

L Busch, G Iaquaniello, P Rosier,

Modal and harmonic response analysis

Modal and harmonic response analysis

1512 July 2023L Busch, G laquaniello, P Rosier,
M Stamm and S Grohmann

Modal and harmonic response analysis

Summary and prospects

16 12 July 2023 L Busch, G Iaquaniello, P Rosier, M Stamm and S Grohmann

Summary & prospects

Summary and prospects

- Conceptual structure of the 2 K inner shield for ET-LF cryogenic payloads
- Approximation of the steady-state thermal behavior of the shield
- Detailed investigation and theoretical validation of the He-II condensation process
- Structural shield reinforcements
 - > Box mode frequencies significantly above ET-LF detection band and
 - > Low vibrational amplification factors within detection band achievable

- Detailed shield suspension development
- Evaluation of phase noise levels and mechanical coupling with payload
- Experimental investigation of low-noise He-II supply

L Busch, G Iaquaniello, P Rosier, M Stamm and S Grohmann Summary & prospects

Karlsruhe School of Elementary Particle and Astroparticle Physics: Science and Technology (KSETA)

18

ederal Ministry of Education and Research (BMBF): He-II cooling for the Einstein Telescope and ETpathfinder (Gr 05A20VK4)