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Introduction: Cryogenic Upper Stage for Space Exploration
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Conventional Sequence Before Engine Ignition

Subcooled liquid or sufficient NPSP  (7)
IS required to avoid cavitation
instability in the pump:
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Proposed Method: TVS-based Liguid Subcooler

Onboard liquid subcooler based on TVS (Thermodynamic Vent System)
using J-T (Joule-Thomson) expansion.
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w NAGOYA

UNIVERSITY



= Temperature T, K

—
N

Thermodynamic Diagram of the Subcooler
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Subcooler Installation

Before reignition in orbit

To achieve required NPSP App_lying the_ SUb_COOIer to low
liquid level situation because
J-T - Small and light weight heat
orifice
Ullage S);c::enc?e at the bottom can

exchanger,

- Conventional pressurization
method requires a large
amount of He gas due to
large ullage.

Cryogenic liquid

5><
CIoseX Open

To pump

The use of the subcooler is expected to provide
100 kg mass advantage per engine ignition.
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Experimental Setup

Experimental conditions:
- J-T orifice diameter
#0.3, 0.4, 0.5 mm
- Coolant Supply pressure (P1)

o Water heat
exchanger

™ 0.1 MPaA 0.17 ~ 0.27 MPaA
container ¢ 1.8 orifice
\ y for flow rate = —
measurement
Heat exchanger
N\
Vacuum
J-T orifice chamber
/1 0.05 kPaA

Vacuum insulated LN, dewar
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Typical Cooling History in the Dewar
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Degree of Subcooling and Coolant Flow Rate

Low P1 (coolant supply pressure) and small However, low P1 and small orifice
orifice lead to high degree of subcooling owing  caused low coolant mass flow rate m..
to low P2 (J-T orifice downstream pressure). = Low coolant enthalpy capacity m.L
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Effect of J-T Expansion Pressure on Subcooling

Volume averaged liquid temperature
in the dewar, K
~
N

10
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Theoretical coolant
temperature, T, 4,

0 0.05 0.1 0.15 0.2
P2: Pressure downstream of the orifice, MPa

Effect of P2 (J-T orifice downstream pressure)
M P2 > 0.1 MPa

- No subcooling because of coolant
temperature was over 77 K (Tsat at 0.1 MPa).

® 0.05 <P2<0.1 MPa

- Temperature in the dewar decreased along
the theoretical coolant temperature.

B P2 < 0.05 MPa
- The subcooling effect has diminished.

- Low P2 decreases coolant flow rate and
cooling capacity. The coolant capacity is
overwhelmed by the external heat input.
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Energy Efficiency

B Definition of energy efficiency ng

dTy AT,
|14 |14 —
Heat removal from LN, in the dewar dpl < dt ) d¢pl ( At )

e = T Decrease in coolant enthalpy N mc(h I —h, in) ~ mcL
d,sat

N Wdcpl Td,sat — Td
L mAt

Wq4: LN, mass in the dewar

Degree of subcooling of LN, in the dewar | ¢p1* Specific heat of LN,

x Coolant mass consumption m.: Coolant flow rate
P h.: Coolant specific enthalpy

L: Latent heat of vaporization
At: Cooling duration until steady-state

= Degree of subcooling of LN, per
unit coolant mass consumption
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Optimization Based on Energy Efficiency
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@ Low P1 and small orifice
- Low temperature after J-T expansion

- Due to low coolant flow rate and its capacity,
ng decreases because the external heat input
becomes relatively large.

® Optimum point in this configuration

@ High P1 and large orifice
- High temperature after J-T expansion

- Subcooler doesn’t work when coolant is over
the 77 K. Eeven less than 77 K, ng decreases
because the coolant does not completely

evaporate in the HEX.
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Conclusion

» Onboard subcooler of cryogenic liquid propellants was proposed.
» The experiment showed a maximum degree of subcooling of 4 K.

» With low P1 (supply pressure) and small orifice, P2 (downstream
pressure of the orifice) decreased, and the coolant temperature and flow
rate also decreased. The flow rate is proportional to the coolant enthalpy
capacity, thus, low P2 can result in lower energy efficiency.

» When using a high P1 and large orifice, the coolant flow rate and
capacity increased, but the coolant temperature didn’t decrease. With
the high coolant temperature, the subcooling effect diminishes, resulting
In decreased efficiency.
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