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Introduction: Cryogenic Upper Stage for Space Exploration
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➢ Cryogenic propellant management is 

a key for deep space exploration 

because cryogenic liquid engines 

provide high performance (high Isp).

➢ One of important technology                   

is multiple cryogenic                           

engine ignition.
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Conventional Sequence Before Engine Ignition
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Vent

③
He gas

Subcooled liquid or sufficient NPSP 

is required to avoid cavitation 

instability in the pump:

NPSP＝ 𝑝in +
1

2
𝜌l𝑢

2 − 𝑝v 𝑇l

NPSP > NPSPreq

Subcooled

Low temperature

Saturated condition

Pressurization

Waste of vent gas, He gas 

and He bottle.

Decrease launch capability. 



Proposed Method: TVS-based Liquid Subcooler

Onboard liquid subcooler based on TVS (Thermodynamic Vent System) 

using J-T (Joule-Thomson) expansion.
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Thermodynamic Diagram of the Subcooler
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Subcooler Installation
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Applying the subcooler to low 

liquid level situation because

- Small and light weight heat 

exchange at the bottom can 

be used.

- Conventional pressurization 

method requires a large 

amount of He gas due to 

large ullage.

The use of the subcooler is expected to provide 

100 kg mass advantage per engine ignition.

Before reignition in orbit
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Experimental Setup
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Experimental conditions:

- J-T orifice diameter

f0.3, 0.4, 0.5 mm

- Coolant Supply pressure (P1)

0.17 ~ 0.27 MPaA



Typical Cooling History in the Dewar
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Degree of Subcooling and Coolant Flow Rate
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Low P1 (coolant supply pressure) and small 

orifice lead to high degree of subcooling owing 

to low P2 (J-T orifice downstream pressure).
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However, low P1 and small orifice 

caused low coolant mass flow rate ሶ𝑚c.

Low coolant enthalpy capacity ሶ𝑚c𝐿



Effect of J-T Expansion Pressure on Subcooling
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temperature, Tc,th

Effect of P2 (J-T orifice downstream pressure)

① P2 > 0.1 MPa

- No subcooling because of coolant 

temperature was over 77 K (Tsat at 0.1 MPa).

② 0.05 < P2 < 0.1 MPa

- Temperature in the dewar decreased along 

the theoretical coolant temperature. 

③ P2 < 0.05 MPa

- The subcooling effect has diminished.

- Low P2 decreases coolant flow rate and 

cooling capacity. The coolant capacity is 

overwhelmed by the external heat input.
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Energy Efficiency

11

◼ Definition of energy efficiency 𝜂E

 𝜂E =
Heat removal from LN2 in the dewar

Decrease in coolant enthalpy
=

𝑊d𝑐𝑝l
𝑑 ෠𝑇d
𝑑𝑡

ሶ𝑚c ȁℎc 𝑇d,sat
− ℎc,in

≈

𝑊d𝑐𝑝l
∆ ෠𝑇d
∆𝑡

ሶ𝑚c𝐿

≈
𝑊d𝑐𝑝l

𝐿

𝑇d,sat − ෠𝑇d

ሶ𝑚c∆𝑡

 ∝
Degree of subcooling of LN2 in the dewar

Coolant mass consumption

= 𝐃𝐞𝐠𝐫𝐞𝐞 𝐨𝐟 𝐬𝐮𝐛𝐜𝐨𝐨𝐥𝐢𝐧𝐠 𝐨𝐟 𝐋𝐍𝟐 𝐩𝐞𝐫
𝐮𝐧𝐢𝐭 𝐜𝐨𝐨𝐥𝐚𝐧𝐭 𝐦𝐚𝐬𝐬 𝐜𝐨𝐧𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧

𝑊d: LN2 mass in the dewar

𝑐𝑝l: Specific heat of LN2

ሶ𝑚c: Coolant flow rate

ℎc: Coolant specific enthalpy

𝐿: Latent heat of vaporization

∆𝑡: Cooling duration until steady-state



Optimization Based on Energy Efficiency
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① Low P1 and small orifice

- Low temperature after J-T expansion

- Due to low coolant flow rate and its capacity, 

𝜂E decreases because the external heat input 

becomes relatively large.

② Optimum point in this configuration

③ High P1 and large orifice

- High temperature after J-T expansion

- Subcooler doesn’t work when coolant is over 

the 77 K. Eeven less than 77 K, 𝜂E decreases 

because the coolant does not completely 

evaporate in the HEX.

①

②

③



Conclusion 

➢ Onboard subcooler of cryogenic liquid propellants was proposed.

➢ The experiment showed a maximum degree of subcooling of 4 K.

➢ With low P1 (supply pressure) and small orifice, P2 (downstream 

pressure of the orifice) decreased, and the coolant temperature and flow 

rate also decreased. The flow rate is proportional to the coolant enthalpy 

capacity, thus, low P2 can result in lower energy efficiency.

➢ When using a high P1 and large orifice, the coolant flow rate and 

capacity increased, but the coolant temperature didn’t decrease. With 

the high coolant temperature, the subcooling effect diminishes, resulting 

in decreased efficiency.
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