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Summary
• AlBeMet AM162H
• Mass specific resistivity comparison and resistivity 

of AlBeMet AM162H versus state-of-the-art 
cryoresistive materials

• Magnetoresistance of AlBeMet AM162H
• DC current carrying capacity of AlBeMet AM162H 

versus state-of-the-art cryoresistive materials and 
REBCO coated conductor

• AlBeMet AM162H current leads
• AlBeMet AM162H for low AC loss conductors
• Future Work
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AlBeMet AM162H, an Al-Be Nanocomposite
• Beryllium is an amazing material, but hard to 

process (machining, bonding, etc.)
• AlBeMet AM162H 38%wt Al matrix, 62%wt Be 

reinforced composite (not an alloy, 
nanocomposite)

• AlBeMet AM162H is machinable, bondable, and 
processable as other Al aerospace grade alloys

• AlBeMet AM162H: 
• High κ (RT=250 W/mK)
• High E (RT=200 GPa)
• Low ρ (2.1 g/cm3)
• High σy (RT>300 MPa) 

• What about cryogenic electrical resistivity and 
magnetoresistance?

https://materion.com/-/media/files/beryllium/albemet-materials/maab-009mechanicalandthermalpropertiesofaluminumberylliumalloyam162.pdf
Tuttle “Cryogenic thermal conductivity measurements on candidate materials for space missions” (2017)

Blue: Al 1350
Green: AlBeMet deform-parallel

Red: AlBeMet deform-perpendicular
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Mass Specific Resistivity
• Mass specific electrical resistivity (MSR) is an 

important material metric for aerospace
• Density multiplied by resistivity (small is good)
• Be has the lowest mass specific resistivity of any 

structural rated and chemically stable metal, next up is 
Al

• Be hard to shape and bond, AlBeMet AM162H is not
• Be ρelec < Cu starting from 180K
• AlBeMet AM162 (RRR=17) ρelec < Cu 105K to 150K

4
Bruggeman effective medium approximation
Composite resistivity “rule-of-mixtures”
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Note on AlBeMet Cryogenic MSR
• AlBeMet AM162H metal powders are 

high purity Al 1100 and Be (grade B-26-
D)

• Annealed (593C x 24hr) AlBeMet 
AM162H is RRR = 17 even though 
predicted much lower from Bloch-
Gruneisen resistivity + Bruggeman 
effective medium approximation for 
composites.

• High electron scattering at composite 
interfaces, which becomes more 
relevant with increases of mean free 
path at cryogenic temperatures (lMFP is 
proportional to 1/ρelec)

• Tough to avoid oxygen contamination 
from high surface area metal powders

5
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Magnetoresistance of AlBeMet vs. Other Cryoresistive Options
• Cu follows Kohler plot well, 5-9s Al not so well, 

[Fickett (1971)]
• “Anomalous magnetoresistance” in 5-9s 

multifilamentary wire is large
• New composites reduce this (see OSU/HTR 

research M3Or4M-03)

• AlBeMet AM162H magnetoresistance is 
similar to Cu, and smaller than 5-9s Al up to 3 
T.

• At 4.2 K and 20K AlBeMet AM162H is much 
higher resistivity than other state-of-the-art 
cryoconductors

6
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Fickett “Aluminum 1. A Review of Resistive Mechanisms in Aluminum” (1971)
Eckels “Magnetoresistance in Composite Conductors” (1990)

1980s AFRL strand
2020s HTR strand



DC “Ampacity” of Cryoresistive and Superconducting Options
• “Current carrying capacity”, known as Ampacity, is a function of effective cooling rate and 

resistivity of the ohmic material
• For unit cross section and unit length:

• 𝐽𝐽𝑒𝑒−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴/𝑚𝑚2 =
𝑄𝑄[𝑊𝑊𝑚𝑚]

𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 × 𝐼𝐼
      and     

•  𝐽𝐽𝑒𝑒−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴/𝑚𝑚2 =
𝑄𝑄[ 𝑊𝑊

𝑚𝑚3]

𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

• Where “Q” is a known cooling-rate and “I” is current 
• Knowing current, it is then possible to calculate the safe cross-sectional area of a wire/cable.
• Can also calculate an important performance metric which is mass density divided by ampacity [kg/(A*m)] (smaller 

is better) 

• Ampacity also exists in superconducting composites.  Incorporating current sharing with 
the stabilizer increases ampacity to greater than Jc.

• 𝐽𝐽𝑒𝑒−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝐴𝐴/𝑚𝑚2 =
𝐽𝐽𝑐𝑐−𝑒𝑒𝑒𝑒𝑒𝑒×𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡+ 𝐽𝐽𝑒𝑒−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)×𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡
• Where “Atot and Astabilizer” is total cross-sectional area of the superconducting composite and stabilizer respectively 

and “Jc-eng” is the critical current density of the superconducting composite.

7
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DC “Ampacity” of Cryoresistive and Superconducting Options
• Ampacity is a strong function of available 

cooling
• This comparison is for:

• High performance YBCO (Ic data for AP Superpower 
tape [https://htsdb.wimbush.eu/]) customized with a 
20 µm thick 500RRR Cu stabilizer and 30 µm substrate.

• Q = 1 W/cm3

• 4-filament 5-9s Al wire, 5-9s 51% cross-section and 
matrix low RRR

• And AlBeMet AM162H

• YBCO has best metric <87.1K, <Tc.
• YBCO coated-conductor still has ampacity above Tc, 

but a positive offset versus pure stabilizer because the 
stabilizer is a fraction of the cross-section.

• Above 87.1K, AlBeMet AM162H has best metric

• 4-filament 5-9s Al wire is less competitive 
versus HTS at lower temperatures

8
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DC “Ampacity” of Cryoresistive and Superconducting Options
• Ampacity is a strong function available cooling
• This comparison is for:

• High performance YBCO (Ic data for AP Superpower 
tape [https://htsdb.wimbush.eu/]) customized with 
a 20 µm thick 500RRR Cu stabilizer and 30 µm 
substrate.

• Q = 20 W/cm3

• 4-filament 5-9s Al wire, 5-9s 51% cross-section and 
matrix low RRR

• And AlBeMet AM162H

• YBCO has best metric <81.3K, <Tc.
• YBCO coated-conductor still has ampacity above Tc, 

but a positive offset versus pure stabilizer because 
the stabilizer is a fraction of the cross-section.

• Above 81.3K, AlBeMet AM162H has best 
metric

• 4-filament 5-9s Al wire is more competitive 
versus HTS at lower temperatures

9
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Cryoresistive DC Current Leads

• For high amperages, any current leads for cryo-
power systems in the cryo  ambient (or higher 
T) transition will have substantial mass

• Standard techniques
• Tapered leads, thin in cryo and thicker up top
• Multi-cryoresistive material leads
• HTS composite leads

• Minimize Joule Heating + Heat Leak
• First examining single material tapered leads

10
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37 kA room temperature copper termination, 120 kg



Cryoresistive 3.3 kA DC Current Leads

• HPAL(RRR=9000) and AlBeMet AM162H examined as a 
tapered single material current lead, k(T) and ρ(T)

• Optimization to minimize incoming heat flux by 
changing length

• Parametric study of different conical scaling ratio, radii, 
and Tcold (20, 60, 77, and 112K)

11
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Heat Flux Plane

Fixed,Thot

Fixed,Tcold



Cryoresistive 3.3kA DC Current Leads Comparison
• AlBeMet 162H is substantially lower mass for low 

temperatures, but slightly higher heat flux in
• For radii and scale factor examined
• Lower electrical and thermal conductivity reduces length 

slightly to reach min heat flux
• Density 2.1 g/cm3

 vs 2.7 g/cm3

• Need to examine different thermal gradients and 
consider incorporating into an HTS composite 
lead

• At 112K (LNGStdP) AlBeMet 162H is still lower 
mass and higher heat flux in, but the difference is 
smaller

• AlBeMet 162H is substantially more expensive 
per kg than aluminum (~$700/kg)

• Critical components such as low heat leak current leads 
for space and suborbital vehicles an analysis is necessary.

12
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AlBeMet AM162H for Cryogenic Low AC-Loss Applications
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• Litz cable of cryoresistive conductors (50 µm filament diameter)
• Comparison with low-loss BSCCO-2212 wire
• Q = 1, 5, 20 W/cm3, Solve for safe sinusoidal frequency at different temperatures
• Higher frequency desired for many rotating machines
• Power loss for BSSCO-2212 composite

• 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑟𝑟𝑓𝑓
𝑟𝑟0

2 𝜋𝜋2

2
𝐵𝐵𝑚𝑚𝑓𝑓

2 𝐿𝐿𝑝𝑝
2𝜋𝜋

2 1
𝜌𝜌𝑚𝑚𝑚𝑚

𝑟𝑟02−𝑟𝑟𝑓𝑓2

𝑟𝑟02+𝑟𝑟𝑓𝑓2
+ 1

𝜌𝜌𝑡𝑡𝑡𝑡

𝑟𝑟𝑓𝑓2−𝑟𝑟𝑐𝑐2

𝑟𝑟𝑓𝑓2
+ 1

𝜌𝜌𝑚𝑚𝑚𝑚

𝑟𝑟𝑐𝑐2
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+

𝜋𝜋2

2 𝐵𝐵𝑚𝑚𝑓𝑓
2

4𝜌𝜌𝑚𝑚𝑚𝑚
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• 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 8
3𝜋𝜋

𝑓𝑓𝜆𝜆𝐵𝐵𝑚𝑚𝐽𝐽𝑐𝑐𝑑𝑑 1 + 1
3

𝐽𝐽𝑚𝑚
𝐽𝐽𝑐𝑐

2

• Power loss calculated for Cryoconductor Litz

• 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ⁄𝑊𝑊 𝑚𝑚3 = 𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
2 × 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜋𝜋2

4∗𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝐵𝐵𝑚𝑚𝑓𝑓𝑑𝑑𝑓𝑓

2

• Where “f”=AC frequency, “Bm”=AC field magnitude, “λ”=SC%, 
“d”=filament diameter, “Jm”=AC J magnitude, “rxxx” = different radii 
within of composite, “ρxxx” = different resistivities within composite, and 
Lp = twist pitch of superconducting filaments



Low AC Loss Cryoresistive versus SOA Bi-2212
4MOr1A-03
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• Frequency = 0 Hz when Ohmic losses from comparable 
BSCCO-2212 Je are higher than Q

• AlBeMet AM162H can only compete versus BSCCO-2212 
when Je miniscule near Tc

• 5-9s Al and Cu are both better options than BSCCO-
2212 above 55K

• 5-9s Al is reentrant versus below 40K and surpasses 
BSCCO-2212 again near 30K

• Q = 10 W/cm3



Future Work

• Design, fabrication, and testing of optimized 
AlBeMet AM162H tapered current leads

• Brazing and crimp studies with AlBeMet AM162H 
leads to HPAL cable or solderable lugs

• Environmental coating for AlBeMet AM162H study
• Reachout/collaboration with Materion, NASA, 

others for studies 

15
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Thank You CEC-ICMC 2023!
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“Hawaii is one of those places 
that keeps topping itself.  Just 
when you think you’ll never 
see another sunset as 
beautiful, there comes a 
sunrise that only Gauguin 
could imagine.”

-Thomas Sullivan Magnum IV 
(1982)
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