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Introduction

• Cryogenic transfer systems are an emerging technology 

in both ground and low-g systems

• Two-phase pipe flow will be an inevitable part of these 

systems

• Accurate models are required to develop efficient, cost 

effective, and safe two-phase flow boiling/heat transfer 

systems

• Recently, attention has been drawn to the fact that 

existing room-temperature based models and 

correlations do a poor job in predicting cryogenic flow 

phenomena

– For steady state or heated tube, the disparity 

between these models and cryogenic HTC data is 

as high as 400%

• To address this concern, direct cryogenic data 

anchored correlations and subroutines are 

systematically being developed and validated across 

the board for multiple cryogenic propellants and transfer 

phenomena
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SpaceX Starship Cryo Proof Test
From https://www.nasaspaceflight.com/2020/04/starship-sn4-set-for-test/

LH2 Storage Tank and transfer line at 

NASA KSC
From https://www.nasa.gov/feature/kennedy-plays-critical-role-in-

large-scale-liquid-hydrogen-tank-development



Background

• In heating, or steady state case, single 

phase liquid flow is already established, and 

an external heat source gradually boils the 

liquid

– The heating configuration follows the 

boiling curve from left to right

• Existing correlations used for two phase flow 

are typically based on room temperature 

fluids and do not do a good job at prediction 

cryogenic behavior

• Universal correlations have been developed 

using existing cryogenic experimental data 

to cover the different boiling phenomena for 

cryogenic fluids

• Current work will show implementation of 

universal correlations into Thermal Desktop 

and compare against the Built-In TD code 

for a historical dataset using Helium
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A typical boiling curve. 
from Mercado et al., 2019



Built-in Thermal Desktop Correlation
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Low Flow Quality

(x<XNB)

High Flow Quality

(XNB<x<1.0)

Low Wall Superheat (below TCHF) Chen (1963)

Linear interpolation between 

Chen and Dittus-Boelter

(𝑁𝑢=0.023𝑅𝑒0.8𝑃𝑟0.4)

Transition (between TCHF and the 

smaller of Tleid and Tdfb)

Non-linear interpolation 

between nucleate and film 

boiling using scaling laws 

by Ramilison and Leinhard

Non-linear interpolation 

between nucleate and film 

boiling using scaling laws by 

Ramilison and Leinhard

High Wall Superheat (above the 

smaller of Tleid and Tdfb)
Bromley Groeneveld

• By default, Thermal Desktop recognizes two fundamental boiling heat 

transfer regimes: nucleate and film.

• Thermal Desktop decides which boiling correlation to use based on the 

wall superheat and flow quality in each fluid lump

XNB: cut-off quality for nucleate boiling, default is 0.7 but can be changed by user

TCHF: critical heat flux temperature

Tleid: Leidenfrost temperature

Tdfb: departure from film boiling temperature



New Universal Correlations

• New Universal Cryogenic Correlations were developed at Purdue University

• The aim of these correlations was to create a continuous predictive model along the entire 

boiling curve

• Correlation was developed for pre-Critical Heat Flux (CHF) heat transfer coefficient, post-CHF 

heat transfer coefficient, and location of the CHF 

• Universal Correlations originally developed in MATLAB

• Ported over into Thermal Desktop using a User Subroutine
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Experimental Set-Up

• Heated tube experiments are by 

definition steady state experiments

– Typically, fluid and tube wall begin at the 

same temperature and heat is slowly 

delivered until the system reaches steady 

state for a fixed heat flux

• Giarrantano (1973):

– Liquid Helium

– Constant Heat Flux

– Vertical Pipe

– 10 cm length, 2.1 mm diameter

– 10 data sets

– 10 wall thermocouples
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Experimental Set Up
from Giarrantano et al., 1973



Experimental Set-Up

• Experiment test sections are modeled in 

Thermal Desktop as a single pipe object

• Inlet plenum fixes the inlet conditions 

going into the pipe

• Setflow path dictates the flow rate

• Constant heat flux is applied using a heat 

load on the inner surface of the pipe

• Fluid Lumps and Solid Nodes represent 

each segment of the pipe

• Lump and Nodes connected by Tie which 

dictates the heat transfer coefficient 

between the fluid and wall

– Built-In Code: TD calculates HTC

– Universal Code: User Subroutine calculates HTC

• 10 Lump/Nodes to match Girrantano test 
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Model Set-Up

• Calculated zCHF vs. Fixed zCHF

– First Set-Up, Calculated zCHF:

• Pre-CHF heat transfer coefficients

• Post-CHF heat transfer coefficients

• CHF location

– Second Set-Up, Fixed zCHF:

• Pre-CHF heat transfer coefficients

• Post-CHF heat transfer coefficients

• CHF calculation is FIXED, given as input

• Not possible to run the Built-In Correlation with a fixed zCHF

• Mean Average Percentage Error (MAPE) = 
1

𝑛
σ𝑡=1
𝑛 𝐹𝑡−𝐴𝑡

𝐴𝑡

• Symmetrical Mean Average Percentage Error (SMAPE) = 
1

𝑛
σ𝑡=1
𝑛 𝐹𝑡−𝐴𝑡

(𝐴𝑡+𝐹𝑡)/2

• θ : percentage of data points within +/- 30% of the test data points

• Φ: percentage of data points within +/- 50% of the test data points
9



CALCULATED ZCHF MODEL RESULTS
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Calculating zCHF Results
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Fig 4 Sh 1 Universal Correlation Built in Correlation

MAPE 3.4% 129.8%

SMAPE 3.7% 75.5%

zCHF Error % 8.3% 96.4%

Fig 9 Sh 1 Universal Correlation Built in Correlation

MAPE 21.7% 80.7%

SMAPE 27.7% 59.1%

zCHF Error % 4.8% 96.4%
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Calculating zCHF Results
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Data Points: 100

MAPE: 13.3%

SMAPE: 13.5%

Ɵ: 84.0%
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Data Points: 100
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FIXED ZCHF MODEL RESULTS
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Fixed zCHF Results
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Fig 9 Sh 1 Overall Nucleate Boiling Film Boiling

MAPE 18.8% 5.0% 39.5%

SMAPE 23.8% 4.8% 52.5%

Fig 8 Sh 2 Overall Nucleate Boiling Film Boiling

MAPE 13.7% 10.8% 25.2%

SMAPE 11.9% 9.9% 20.2%
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Fixed zCHF Results 
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Fixed zCHF Results 
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Discussion

• Universal Code outperforms Built-In Code in Calculating zCHF model for 

Helium

– Universal Code MAPE/SMAPE < 14%

– Built-In Code MAPE/SMAPE < 71%

– Both Built-In TD Code and Universal code underpredict film boiling

• Fixed zCHF model using Universal Code gives MAPE/SMAPE <5% in 

pre-CHF region

• Fixed zCHF model using Universal Code gives MAPE/SMAPE <32% in 

post-CHF region

• Future Work:

– Concurrently evaluating performance of Universal Correlations for other cryogens

– Universal Correlations implementation into Thermal Desktop can be used for future 

experiments to predict transfer line performance
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Questions?
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BACKUP SLIDES
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Calculated zCHF model results
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Case Universal

Correlations

MAPE (%)

Universal

Correlations

SMAPE (%)

Universal

Correlations

zCHF Error

(%)

Built-In

Correlations

MAPE (%)

Built-In

Correlations

SMAPE (%)

Built-In

Correlations zCHF

Error (%)

Figure 3 Sheet 1 22.5% 18.0% 18.8% 107.4% 67.9% 89.4%

Figure 3 Sheet 3 14.6% 11.1% 21.1% 99.2% 66.3% 100.0%

Figure 4 Sheet 1 3.4% 3.7% 8.3% 129.8% 75.5% 96.8%

Figure 5 Sheet 2 1.1% 1.1% 0.0% 71.0% 52.4% 100.0%

Figure 6 Sheet 2 5.7% 6.0% 0.0% 8.8% 9.2% 100.0%

Figure 7 Sheet 1 23.1% 27.9% 64.3% 31.5% 25.8% 37.1%

Figure 8 Sheet 2 14.1% 14.4% 13.2% 76.6% 53.9% 89.6%

Figure 9 Sheet 1 21.7% 27.7% 5.1% 80.7% 59.1% 68.7%

Figure 9 Sheet 2 4.1% 4.0% 2.7% 75.3% 54.7% 100.0%

Figure 10 Sheet 1 23.1% 21.1% 6.3% 27.5% 24.0% 68.9%

Average 13.3% 13.5% 14.0% 70.8% 48.9% 85.0%



Fixed zCHF Model Results
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Case Universal

Correlations

pre-CHF

MAPE (%)

Universal

Correlations

pre-CHF

SMAPE (%)

Number

of pre-

CHF data

points

Universal

Correlations

post-CHF

MAPE (%)

Universal

Correlations

post-CHF

SMAPE (%)

Number of post-

CHF data points

Figure 3 Sheet 1 1.0% 1.0% 8 23.7% 29.7% 2

Figure 3 Sheet 3 0.8% 0.8% 10 - - -

Figure 4 Sheet 1 5.9% 7.4% 10 - - -

Figure 5 Sheet 2 1.1% 1.1% 10 - - -

Figure 6 Sheet 2 5.7% 6.0% 10 - - -

Figure 7 Sheet 1 8.3% 7.9% 3 26.0% 24.5% 7

Figure 8 Sheet 2 10.8% 9.9% 8 25.2% 20.2% 2

Figure 9 Sheet 1 5.0% 4.8% 6 39.5% 52.5% 4

Figure 9 Sheet 2 3.5% 3.3% 10 - - -

Figure 10 Sheet 1 18.7% 17.5% 7 31.2% 27.7% 3

Average 5.5% 5.5% - 29.5% 31.3% -


