Modelling and optimization of cryogenic mixed-refrigerant cycles for the cooling of superconducting power cables

F Boehm, S Grohmann, *Cryogenic Engineering Conference, Honolulu, C1Or2A-01, July 10, 2023*
SuperLink – 15 km superconduction in Munich

- Progressing electrification due to energy transition
- Upgrading power grid is imperative (age, performance)

- Lower space demand
- No electromagnetic emissions
- No joule heating
- Higher transmission performance

[1] www.nkt.de

SuperLink – Cooling stations

- Cooling temperature below 77 K
- 15-30 kW per cooling station
- Low-maintenance & reliable
- Low space requirement
- Low energy demand

[4] stirlingcryogenics.eu

CMRC cascade

- Single-stage CMRC inefficient for very low temperatures (70 K)
- Model presentation of cascade in future publication

This presentation:
- Modelling single-stage CMRC
- Optimization concept
Implementation

[6]: Wolfram Research
[7]: CoolProp

\begin{align*}
\text{Temperature} / \text{K} & \quad \text{Transferred heat} / - \\
\end{align*}
Process Simulation

- Single-stage CMRC (Linde-Hampson)
- Model built in Wolfram Mathematica
- Steady-state simulation
 - Single-stage compressor, fixed efficiency
 - High and low pressures, pressure drop
 - Temperature levels, minimum temperature approach
 - Mixture components and concentrations

Results
- Energy demand
- Temperature profile
Pinch Point Detection

- Finding pinch points through generated temperature profiles
- Quantifying „physicality“ with equation developed by Kochenburger [8]

\[A = \int_0^{\hat{Q}_{\text{total,HP}}} \max\{0, \Delta T_{\text{min,HX}} - (T_{\text{HP}} - T_{\text{LP}})\} \, d\hat{Q}_{\text{HP}} \]

- Needed for penalty functions in optimization
Optimization

- Concentrations
- Pressures
- Temperatures

CMRC circuit
Complex correlations
No derivatives available
→ disqualifies many algorithms

- Energy demand
- Pinch point analysis
Optimization

- No derivatives needed
- Independent of starting values
 - Global optimization
- Treatment of boundary conditions
- Abort criterion definable

Differential Evolution\(^{[9,10]}\)
- Genetic algorithm
- Global optimization
 „Exploration & Exploitation“
Optimization

- Population based approach
 - lower chances of local optima

- Runs in “generations”
 - Mutation, Recombination & Selection

- Optimization parameters:
 - Population size
 - Scale factor/differential weight
 - Crossover probability
 - Applying boundary conditions
 - Penalty functions
 - Abort criterion
Parallelization & Cluster Computing

- Differential Evolution lends itself to parallelization
 - Different candidates in the same generation can be calculated independently

- HPC cluster (bwUniCluster 2.0) available @KIT
First results

- Composition optimization for $T_{\text{cooler,in}} = 90 - 150$ K
- Constant pressures
 - $p_{\text{HP}} = 16$ bar
 - $p_{\text{LP}} = 4$ bar
 - $\Delta T_{\text{min,HX}} = 2$ K

![Graph showing optimum mixture composition vs. cooler inlet temperature]

- Methane
- Ethane
- Propane
- Nitrogen
Conclusions and outlook

- Process simulation
 - More advanced single- and multi-stage compressor model
 - CMRC (auto-)cascades

- Optimization
 - Parameters
 - Penalty functions
 - Algorithm modifications
Bibliography

Thank you for your attention!