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%& j - Modelling and prediction of complex systems
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Industrial System Physical Model

System of equations which describes the physical processes of the industrial equipment

Model-based approaches are usually adopted to provide simulations, early —
. oo . . ° . o o Output=f (Input)
identification of failures and to reveal hidden dependencies among critical systems

physical model of motor Output
Voltage (V)  ——

Magnetic Field (B) —— ——— Torque

Temperature (T) ——

Novel approaches are now available combining Big Data analytics and machine
learning techniques to extract descriptive and predictive models directly from data N

* Suitable for complex systems and variable conditions (Sums amput] > i unknon

* Efficient when it is difficult to develop an analytical model e | WSl e 5, ot

Magnetic Field (8) —— Torque

Temperature (T) ——

* Allow to identify patterns in data, anomalies or failures - — |
* Allow to discover “hidden” dependencies E

=, |

* Reveal new information from available data (a.k.a. data-mining)

Machine Learning learns and numerically approximates the function f
Torque=f (I,V,B,T) > | approximates f

CERN has a complex system of systems, e.g. the LHC superfluid helium cryogenic ﬁ > \
system, with very stringent requirements in terms of availability and reliability N G

* Requiring tools for: quality control, faults analysis, prevention, prediction & mitigation, modelling

* Providing a complete test bed for: modelling, complex fault trees, systems dependencies, risks and e = ==
failures propagation, data and images analysis and interpretation e

We present our investigation of using Graph Neural Networks (GNN) to build
a model of the helium Il bayonet heat exchanger operating in the LHC at CERN
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e Introduction to GNN and the LHC SHe helium loop
e Modelling of the helium Il bayonet HX

e GNN training & testing on LHC prototypes data

e Validation of the model on the LHC standard cell

e Conclusions and perspectives
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e Introduction to GNN and the LHC SHe helium loop
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Why Graphs
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Graphs are a general language for o ©
describing and analyzing entities © o ® o
with relations/interactions ® ®

Many types of data are graphs:

events, networks, pathways, @ %

neurons’ mOIeCUIeS' 3D Shapes’ etC Event Graphs Computer Networks Dise:-;s.e.Pathways
H r} ; i"\“[?-uﬁ;l

Graphs can represent relational oy

structures: molecules, 3D shapes, =),

physics simulations T — il e

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu
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Graphs and machine learning

Complex domains have a rich relational structure, which can be

represented as a relational graph

" Raw | Graph Learmng \
[\\ Data | Data Algorithm | ! Model/

at Representation Downstream
Engj ing Lea rning t prediction task

Automatically
learn the features
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Map nodes to d-dimensional
embeddings such that similar nodes in
the network are embedded close

together
~.node representation
‘ U\ Learn a neural network -
 fiu-RE T T
.: Rd
Feature representation,
embedding

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu
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Graph Neural Networks

S5

Neural Network that operates on graph data (GNN)

A graph network takes a graph as input and returns a graph as output.
The output graph has the same structure, but updated attributes.

-

* V:node set
* E:edgeset
* u:global attributes

* @: Update functions
p: Aggregation functions —

Proved to be able to learn interactions (and physics) just by "observing" the real world

Many real-world objects and phenomena can be represented as graphs
E.g.: Simulations [Sanchez-Gonzalez at al. 2020]

Useful in complex simulations, can speed-up and optimise computation
They can learn relations (“physics”) just based on observations
=> They have the potential to find new (yet unknown) relations
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https://arxiv.org/abs/2002.09405
https://arxiv.org/search/cs?searchtype=author&query=Sanchez-Gonzalez%2C+A
https://arxiv.org/abs/2002.09405
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The LHC Superfluid Helium Loop
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The LHC cryogenic system at
CERN is designed to distribute a
cooling power along a 3.3 km-
long sector of the LHC machine

Il Helium I (4.6-2.18 K/ 3 bar) —» Heat load to cold mass
a bayonet heat exchanger (BHX) provides B ] Helium IT liquid sub-cooled / saturated —> Axial heat flow
Helium II pressurized bath (1.3 bar) —== Heat flow Cold Mass - Bayonet HX

a quasi-isothermal heat sink along the

L P Helium I/ IT non-stratfied two-phase flow —= Heat flow Feeder pipe - Bayonet HX
magnet string in a bath of SHe Il

[~ "] Helium II vapour saturated or overheated

The cooling scheme underwent extensive studies and testing on dedicated test loops and partial/full-
scale prototypes of the magnet string, called String-1 and String-2

The knowledge gained from the experiments facilitated the definition of the control parameters for the
safe and efficient operation of the 27-km LHC machine at temperatures below 1.9 K over several years

This valuable data has also been utilized for training various models, aiding in this intricate cooling
scheme’s comprehension and diagnostic capabilities, leading to improved operation

CERN - Technology Department 8 Luigi SERIO



Outline

HONOLULU

©
-
$
P
=
=
b £

e Modelling of the helium Il bayonet HX
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@Dynamic heat load

Graph modeling of the LHC SHe cooling loop

@Helium Bath
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e GNN training & testing on LHC prototypes data
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:Model training and testing on prototypes data
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simulated experiments performed to measure the heat
conductivity of BHX on the prototype LHC magnets

— applied heat load is set
— system left to find new equilibrium temperature state
— temperature difference is measured

Tincrease [ mK ]
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e Validation of the model on the LHC standard cell
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Simulation of the LHC accelerator operation
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The distribution of temperatures is predicted within sensor’s overall absolute accuracy of 5 mK
The derived wetted lengths match the temperature distribution along the magnet string
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e Conclusions and perspectives
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Conclusions and perspectives
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The developed model is:

* accurate despite some simplifications

* inspectable and explainable

e provides the time evolution of all internal variables

* s easily scalable to simulate various system configurations

The model can be used to
* test and validate existing and future designs
* perform diagnostics (twin model)
e support advanced predictive control

We plan to further improve it by removing current simplifications
 modelling non-linear characteristics of superfluid helium I
e proper simulation of gaseous flow to predict the inverse response
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