Techno-economic Analysis of the Cryogenic Flux Capacitor Compared to Other forms of Hydrogen Production and Storage

Speaker: Joshua Schmitt (Southwest Research Institute)

Co-Authors: Adam Swanger (NASA Kennedy Space Center) Prof. Jayanta Kapat (University of Central Florida) Dr Marcel Otto (University of Central Florida) Noemi Collado (Air Liquide)

CEC/ICMC 2023 Session: M3Or2D-01

MECHANICAL ENGINEERING

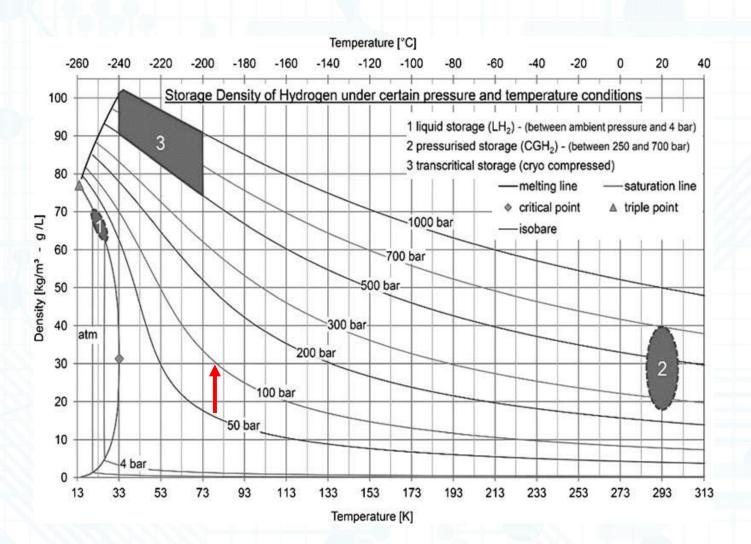
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MECHANICAL ENGINEERING

Background

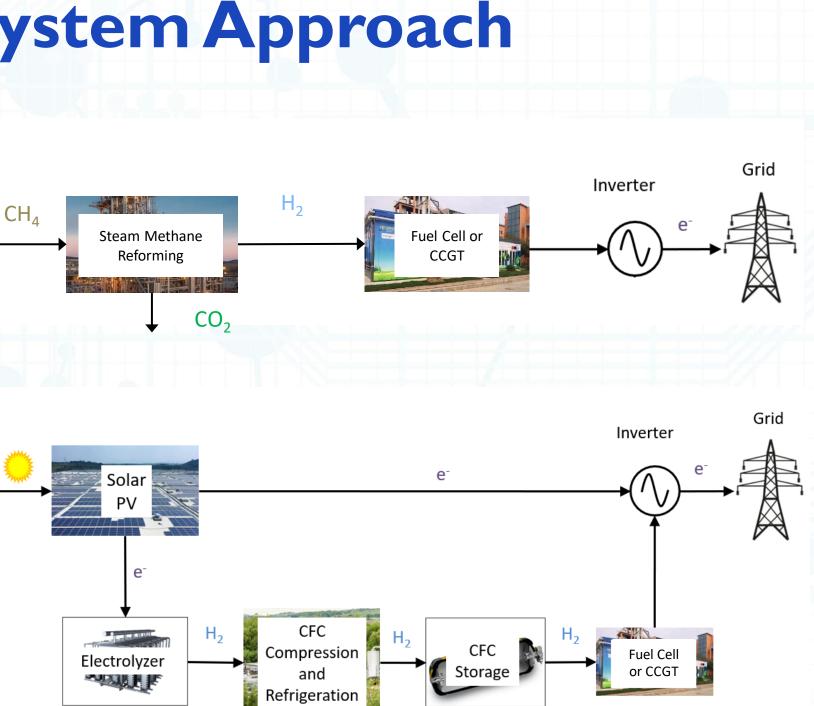
- Physisorption of gas into nanoscale pores of aerogel
- NASA development of various aerogel packaging for containment in a pressure vessel
- Testing has been completed for nitrogen, air, oxygen, argon, and hydrogen
 - DOE grant lead by SwRI, working with UCF, NASA, and Air Liquide
- Mass uptake measurements to demonstrate aerogel performance
 - Testing at the Ig and Ikg of hydrogen scale
 - Tests showed 36-38% increased uptake over an empty vessel at T&P
- Continued testing for pressure up to 50 bar

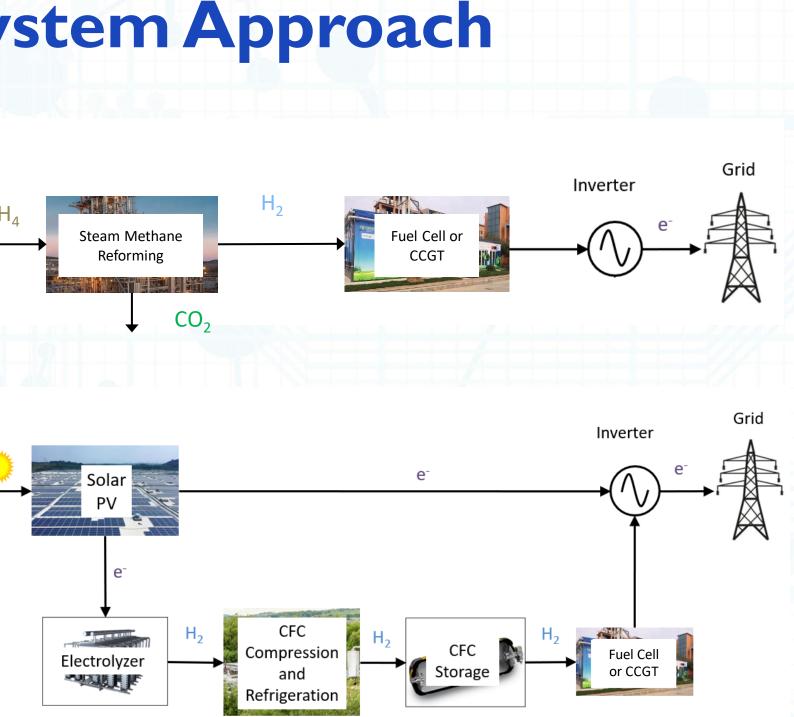


MECHANICAL ENGINEERING

Motivation

- Pair a storage system with its complimentary conditioning system
 - Improve cost and performance with CFC refrigeration
 - Refrigerate to 80K to improve vs liquification
- Analyze costs and performance of the system for green hydrogen vs SMR blue hydrogen
- Base commercial costs on limits of current testing, not hopes of future performance
 - Explore the 50 bar and 80K system


Taccani, Rodolfo & Malabotti, Stefano & Dall'Armi, Chiara & Micheli, Diego. (2020). High energy density storage of gaseous marine fuels: An innovative concept and its application to a hydrogen powered ferry. International Shipbuilding Progress. 67. 1-24. 10.3233/ISP-190274.



MECHANICAL ENGINEERING

Techno-Economic System Approach

- Blue Hydrogen by SMR
- Green Hydrogen by PV with an Electrolyzer
- Storage:
 - Compressed GH₂ at 700 bar
 - Cryogenic LH₂ —
 - CFC at 80 K and 60 bar
- Looked at:
 - 25MW Fuel Cell
 - 650MW Fuel Cell or Combined Cycle -
 - Gas Turbine (CCGT)

MECHANICAL ENGINEERING

Cost and Performance Sources and Methods

- Sources for costs and performance primarily NREL, NETL, DOE Grand Challenge Cost Analysis, and others
- Import/export of hydrogen into storage under a fixed purchase/sale price of \$6/kg as fuel
- I0 hour duration was focus of current work
- CFC storage costs estimated using current BOM for 1kg unit, using 36% storage improvement at T&P, and scaling to 125 m³
- A ratio of component cost to installed cost of
 - 2.5 based on baselines

Source	Used for
NREL Solar Baseline	Solar PV
DOE Grand Challenge 2022 Report	Fuel Cell, Electro GH ₂ Compressio Cavern Storage
NETL Fossil Generation Baseline	Combined Cycle Turbine (CCGT)
NETL Fossil Hydrogen Generation	SMR, GH ₂ Comp
Amos, "Costs of Storing"	GH ₂ Storage, LH Liquifying, LH ₂ S
Green, "Cost of Coolers"	CFC Refrigeratio

for

PV

Cell, Electrolyzer, Compression, rn Storage bined Cycle Gas

, GH₂ Compression

Storage, LH₂ fying, LH₂ Storage

Refrigeration

MECHANICAL ENGINEERING

Cost Factors and Analysis Overview

- LCOE is normalized to total electricity produced
- LCOS is normalized to electricity produced by storage
- LCOH is normalized to hydrogen generated
- 30 year cash flow analysis
 - Based on discount rates from NREL
 - I5 year financing at 6.8% APR

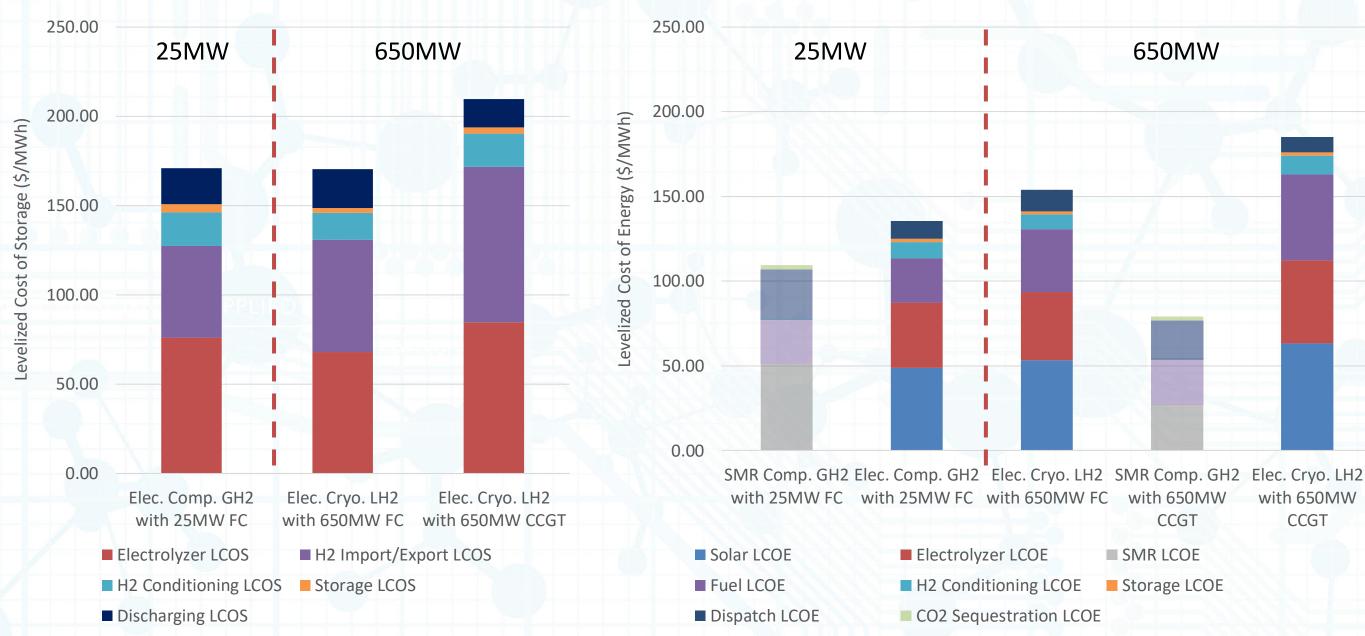
OPEX	
General O&M (%CAPEX/yr)	0.8-3.0%
Natural Gas (\$/MMBTU)	4.42
CO2 Disposal Cost (\$/tonne)	8.0

САРЕХ	25 N
Solar PV (\$/kW _{DC})	
Electrolyzer (\$/kW _{DC})	
SMR (\$/kg/hr)	-
GH ₂ Compression (\$/kg/hr)	
H ₂ Liquification (\$/kg/hr)	
GH ₂ Refrigeration (\$/kg/hr)	
GH ₂ Storage (\$/tonne)	8
LH ₂ Storage (\$/tonne)	
CFC Storage (\$/tonne)	Ę
Fuel Cell (\$/kW _{AC})	
CCGT (\$/kW _{AC})	

WW 650 MW 1,000 990 1,316 1,316 109,537 37,982 15,606 13,833 8,647 3,465 822,000 577,922 577,898 577,898 1,320 1,320 952

MECHANICAL ENGINEERING

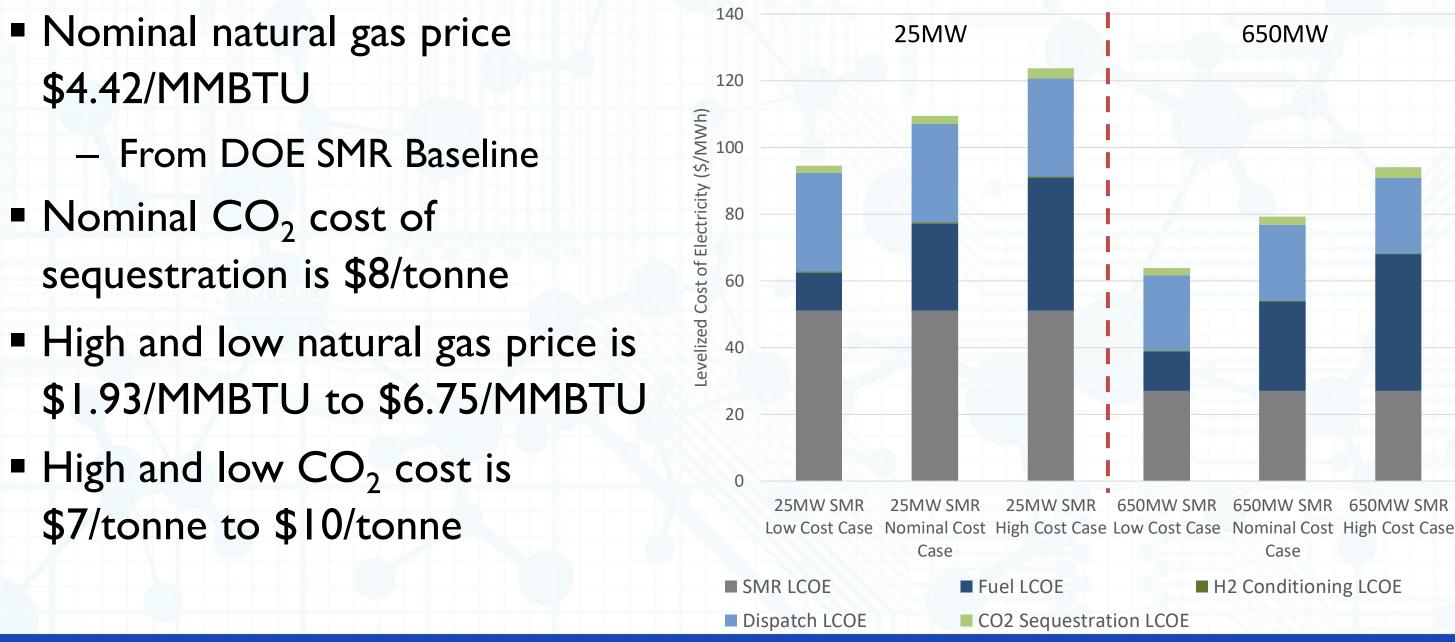
Commercial Systems Results


	SMR Comp. GH2 with 25MW FC	Elec. Comp. GH2 with 25MW FC	Elec. Cryo. LH2 with 650MW FC	SMR Comp. GH2 with 650MW CCGT	Elec. Cryo. LH2 with 650MW CCGT
Round Trip Efficiency (%)		43.8%	40.4%		30.8%
Total CAPEX	\$139.3 M	\$345.7 M	\$9,387.3 M	\$1,882.6 M	\$10,896.6 M
Total OPEX	\$4.0 M	\$3.3 M	\$109.4 M	\$119.6 M	\$119.2 M
Net Annual Cost of Fuel (\$)	\$5.9 M	\$7.5 M	\$277.5 M	\$200.8 M	\$379.6 M
Sequestration Cost	\$0.5 M			\$18.7 M	
Levelized Cost of Unconditioned H ₂ (\$/kg)	1.91	5.04	5.09	1.31	5.02
Levelized Cost of Conditioned H ₂ (\$/kg)	1.92	5.43	5.40	1.32	5.33
LCOE _{DC} Solar Field (\$/MWh _{DC})		39.39	39.00		39.00
Total System LCOS (\$/MWh _{AC})		171.00	170.26		209.64
Combined System LCOE (\$/MWh _{AC})	109.41	135.38	153.78	79.23	185.13

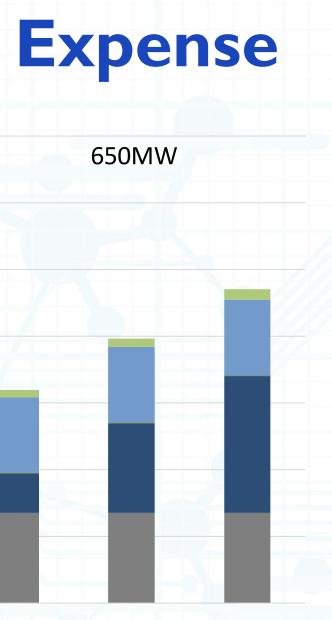
- Solar storage system targeted less than \$6/kg to ensure that production costs are less than sale cost
 - Results in small increases to LCOE

MECHANICAL ENGINEERING

Commercial Systems LCOS and LCOE Breakdown



MECHANICAL ENGINEERING



with 650MW

Sensitivity on Natural Gas and CO₂, Expense

25MW SMR 650MW SMR 650MW SMR 650MW SMR Case

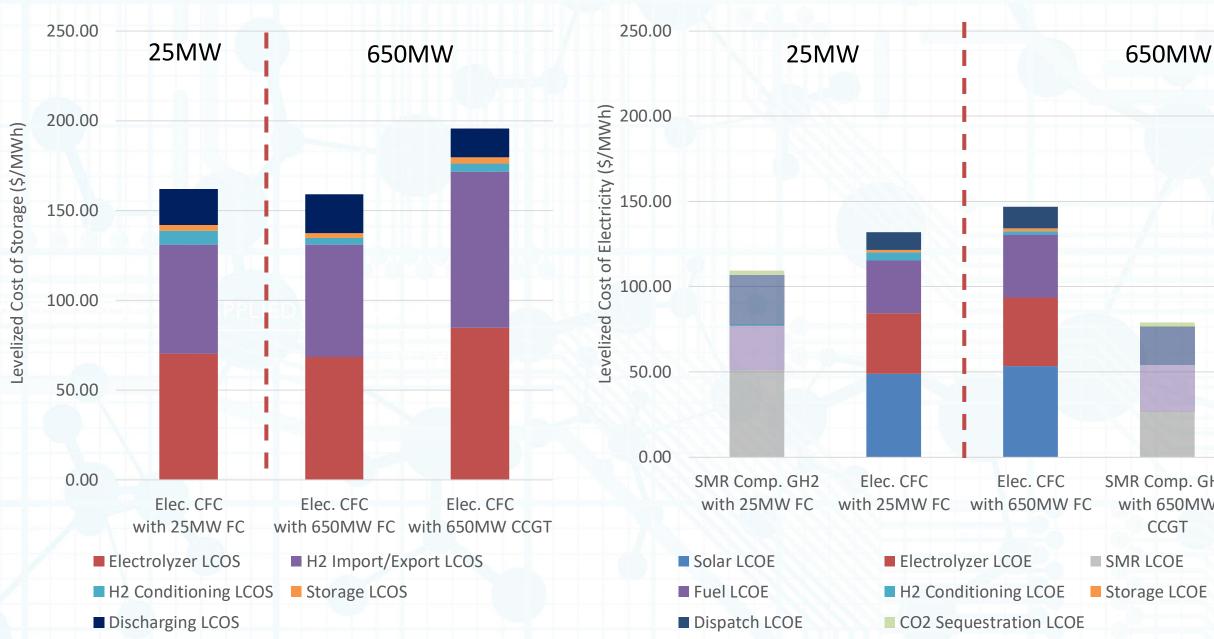
H2 Conditioning LCOE

swri.org

MECHANICAL ENGINEERING

Cryogenic Flux Capacitor Systems Results

	SMR Comp. GH2 with 25MW FC	Elec. CFC with 25MW FC	Elec. CFC with 650MW FC	SMR Comp. GH2 with 650MW CCGT	Elec. CFC with 650MW CCGT
Round Trip Efficiency (%)		40.5%	40.5%		30.9%
Total CAPEX	\$139.3 M	\$320.8 M	\$8,895.0 M	\$1,865.7 M	\$10,282.1 M
Total OPEX	\$4.0 M	\$3.0 M	\$99.4 M	\$119.3 M	\$106.7 M
Net Annual Cost of Fuel (\$)	\$5.9 M	\$8.9 M	\$276.1 M	\$200.8 M	\$377.8 M
Sequestration Cost	\$0.5 M			\$18.7 M	
Levelized Cost of Unconditioned H ₂ (\$/kg)	1.91	5.36	5.08	1.31	5.01
Levelized Cost of Conditioned H ₂ (\$/kg)	1.92	5.57	5.15	1.31	5.08
LCOE _{DC} Solar Field (\$/MWh _{DC})		39.39	39.00		39.00
Total System LCOS (\$/MWh _{AC})		164.09	158.58		194.87
Combined System LCOE (\$/MWh _{AC})	109.41	131.88	146.90	78.96	176.54


- 3-5% improvement of LCOE in storage cases
- High cost dominated by electrolyzer costs, low RTE and storage size limitation causing imports

MECHANICAL ENGINEERING

11

CFC Systems LCOS and LCOE Breakdown

12

MECHANICAL ENGINEERING

Storage LCOE

SMR Comp. GH2 with 650MW CCGT

Elec. CFC with 650MW CCGT

DOE Grand Challenge Goals for 2030

- DOE has established goals for improving the cost of green hydrogen
- DOE aspiring for \$1/kg
 - DOE is assuming cavern storage
 - Fixed cost of buying and selling hydrogen changed to \$2/kg for the analysis case
- Target costs by 2030 analyzed and applied to the cases

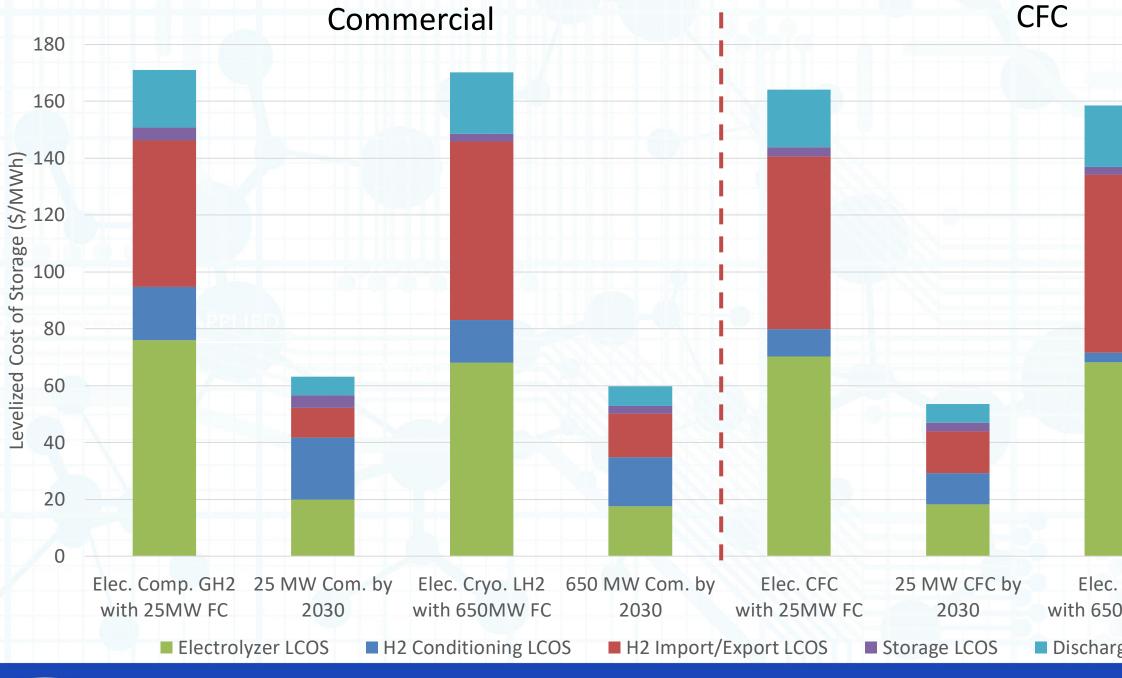
System	DOE 2030 Goal
Solar CAPEX	\$555/kW
Electrolyzer CAPEX	\$350/kW
Fuel Cell CAPEX	\$435/kW
Electrolyzer Efficiency	46 kWh/kg
Price of Hydrogen	\$1/kg

% Improvement from Current

43.9%

73.4%

67.0%


15.3%

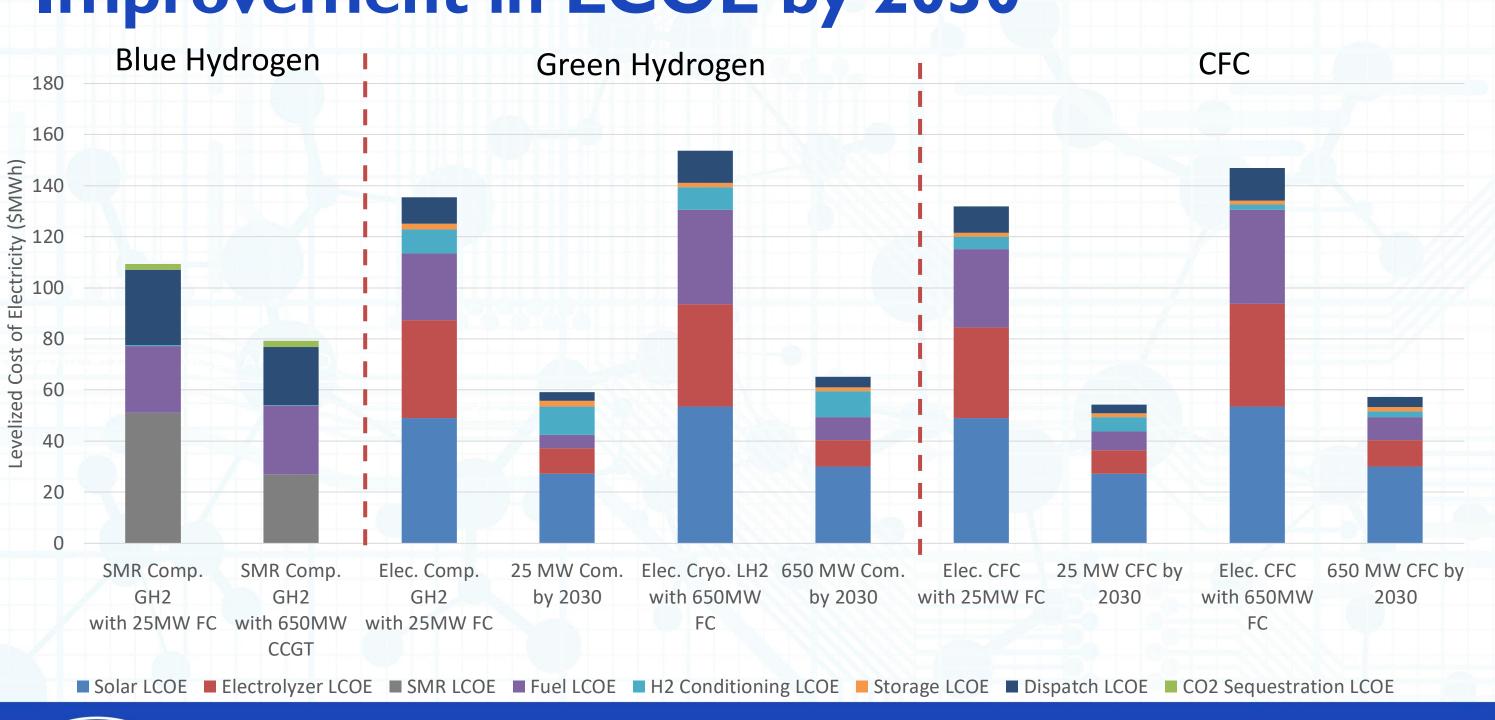
83.3%

swri.org

MECHANICAL ENGINEERING

Improvement in LCOS by 2030

swri.org

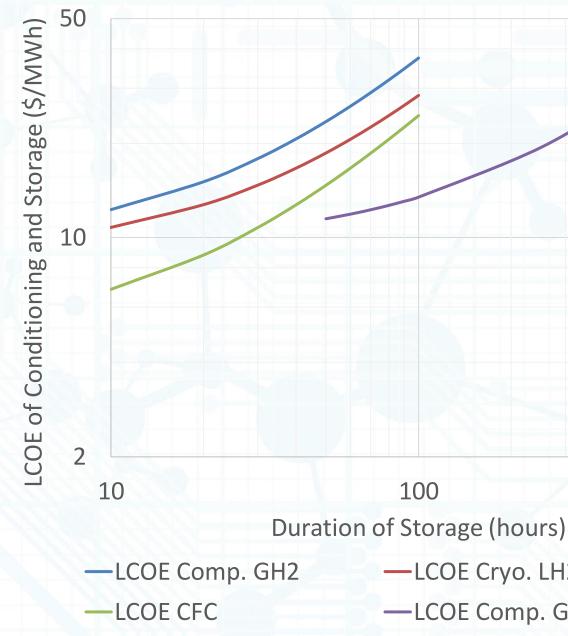

14

MECHANICAL ENGINEERING

Discharging LCOS

Elec. CFC 650 MW CFC by with 650MW FC 2030

Improvement in LCOE by 2030


MECHANICAL ENGINEERING

15

Storage in Caverns

- DOE grand challenge estimates caverns can be 116,000 \$/tonne
- Caverns are analyzed as high-pressure 200 bar GH_2
 - Geographically limited
- Using LCOE for conditioning of GH₂, LH₂, and CFC, the values are added together
- Graph shows combined LCOE of only the conditioning systems and storage
- CFC shows a compelling cost case for IO-

40 hour duration range

swri.org

MECHANICAL ENGINEERING

16

- —LCOE Comp. GH2 Cavern
- -LCOE Cryo. LH2

Conclusions

- CFC when paired with a low-cost conditioning system, could provide improved costs for hydrogen energy storage
- Costs of green hydrogen higher than SMR in current costs
 - SMR provides between \$1.3/kg blue hydrogen at all scales and 79 \$/MWh at 650MW
 - Current commercial green hydrogen storage provides electricity at 135 \$/MWh at 25MW and 154 _ \$/MWh at 650MW
 - CCGT projected to be more expensive than fuel cell due to efficiency gap
- Cost and performance improvements in the DOE grand challenge by 2030
 - Hydrogen becomes much more closely competitive at 59 \$/MWh at 25MW and 65 \$/MWh at 650MW
 - CFC is projected to reduce hydrogen costs further to 53 \$/MWh at 25MW and 58 \$/MWh at 650MW

Caverns are most cost effective for seasonal storage, but CFC is compelling at shorter durations

MECHANICAL ENGINEERING

17

References

- Taccani, Rodolfo & Malabotti, Stefano & Dall'Armi, Chiara & Micheli, Diego. (2020). High energy density storage of gaseous marine fuels: An innovative concept and its application to a hydrogen powered ferry. International Shipbuilding Progress. 67. 1-24. 10.3233/ISP-190274
- National Energy Technology Laboratory, "2022 Grid Energy Storage Technology Cost and Performance Assessment," August 2022
- National Renewable Energy Laboratory, "U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks, With Minimum Sustainable Price Analysis: Q1 2022," September 2022
- National Energy Technology Laboratory, "Comparison of Commercial, State of the Art, Fossil Based Hydrogen Production Technologies," April 2022
- National Energy Technology Laboratory, "Cost and Performance Baseline for Fossil Energy" Plants Volume Ia: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3," July 2015
- Amos, Wade A., "Costs of Storing and Transporting Hydrogen," National Renewable Energy Laboratory," November 1998
- Green, M.A., "The Cost of Cooling Superconducting Devices at Temperatures at 4.2K, 20K, 40K, and 77K," IOP Conf. Series: Materials Science and Engineering, vol. 101, 012001, 2015

MECHANICAL ENGINEERING

swri.org

Thank You

Questions?

©SOUTHWEST RESEARCH INSTITUTE

MECHANICAL ENGINEERING

19