

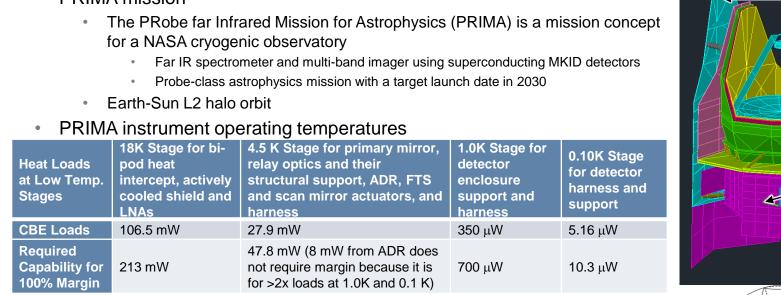
CEC 2023 Effects of Working Fluid on Performance of 4.5 K JT Cooler

Weibo Chen¹ (weibo.chen@jpl.caltech.edu) Bradley Moore¹, Michael Petach², and The PRIMA Study Team

1.Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

2. Northrop Grumman Space Systems, Redondo Beach, California

7/10/2023


This document has been reviewed and determined not to contain export controlled technical data.

This document has been reviewed and determined not to contain export controlled technical data.

MIRI, Sumitomo Hitomi and Planck JT coolers

Performance of existing TRL9 mechanical cryocoolers is not adequate

Cooling power from existing TRL9 coolers is < 50 mW

Jet Propulsion Laboratory

California Institute of Technology

1.8 to 2.0 m **Primary Mirror**

45 K radiator

Cryocooler Radiator

Spacecraft Bus

2

Anti-Sur

avoidance (+37%)

San ______ 25-

Suche

aicidance (~37%)

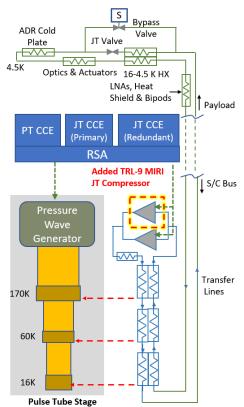
pointing zone

Background

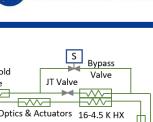
Margin = 100% * {[System capacity/CBE heat load] - 1}

PRIMA mission

This document has been reviewed and determined not to contain export controlled technical data.

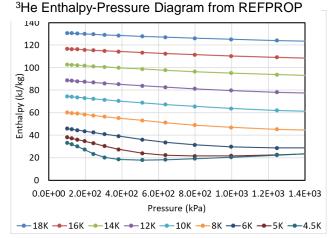

DC input power: 410W.

including CCEs

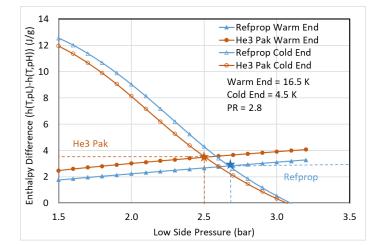

Estimated cooler mass is 68 kg,

Development Paths using MIRI Flight Spare Cooler 1997

- Leverage existing MIRI flight spare cooler
- Candidate JT stage configurations
 - Two-stage compression system with 4 He to achieve a PR > 9
 - Require a lower stage compressor with volumetric flow rate ~ 3x MIRI compressor
 - Decrease JT restriction outlet pressure from 4 bar to about 1.2 bar
 - Require technology maturation of lower stage compressor from TRL4 to TRL6
 - Single-stage compression system with ³He
 - Two parallel MIRI compressors to increase flow rate
 - ³He JT stage does not benefit from a high pressure ratio
 - No need for new compressor technology development
 - All components and subsystem hardware are at TRL 9
- Control electronics
 - Cross-strapped JT compressor CCEs
 - One CCE can drive two compressors
 - One as redundant
 - One PT CCE (no redundant) for Class C mission


Jet Propulsion Laboratory

California Institute of Technology



Thermodynamic Cycle Analysis

- Goal: Maximize JT stage cooling capacity
 - Within compressor thermal and stroke limits over a wide range of operating conditions
- At 4.5 K, ³He enthalpy reaches a minimum value at about 4.8 bar based on REFPROP
 - ³He JT stage would not benefit from a 2-stage compression system
- Predicted optimum suction pressure is about 2.5 bar with He3Pak, and 2.7 bar with REFPROP
 - For fixed PR of 2.8, corresponding to a PR of 3.3 across compressors
- PRIMA conservatively uses properties from REFPRO since it predicts a lower JT effect than He3Pak
 - Will verify ³He properties by testing during Step 1 study

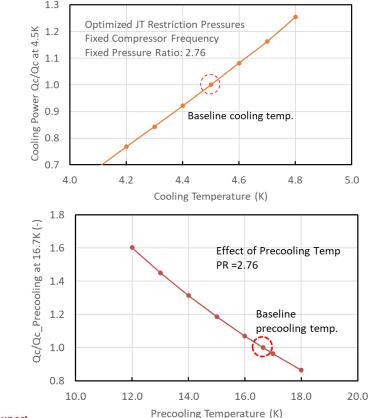
Flow Stream Enthalpy Difference vs JT P_{Outlet}

This document has been reviewed and determined not to contain export controlled technical data.

JT Stage Losses

- Actual performance depends on
 - Pressure drops in warm recuperators
 - Reduce PR across the lowest stage recuperator and JT restriction
 - Loss in lowest stage recuperator due to recuperator thermal ineffectiveness
 - Directly reduces cooling power at 4.5 K
 - PRIMA cooler is more sensitive to this loss since ³He specific cooling capacity is lower than MIRI ⁴He
 - Losses due to ineffectiveness in warm recuperators, and enthalpy flow into cold end of each recuperator due to non-ideal gas effect
 - Increase loads on PT cooler and thus JT precooling temperature
- Total pressure drops reduce JT restriction PR from 3.3 to 2.8
 - Due to higher volumetric flow rate than MIRI
 - Reduce flow cooling capacity by 19%
- Thermal effectiveness of recuperators in both systems are near identical
- Enthalpy flow due to non-ideal gas effect is higher for MIRI ⁴He in 60-18K recuperator
- Overall JT precooling heat loads on PT stages are very similar

Predicted PRIMA Cooler Performance

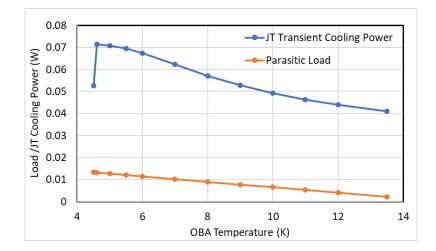

- Cooling power of 53 mW @4.5 K and 235 mW@ 18 K with 275 K heat sink, and optimized JT restriction
 - > 2x of CBE heat loads at these temperatures
 - 49 mW if using existing JT restriction in MIRI cooler, still above 2x CBE load re
- Require a compression ratio of 3.3 and mass flow rate of 20.66 mg/s
 - Well within scaled capability of MIRI JT compressors
- CBE DC input power: 410 W (PT: 334 W + JT: 76 W)
 - For comparison, MIRI cooler bus nominal input power of 400 W at SS and 475 W during cooldown
- CBE cooler mass is 68 kg, including CCEs
 - Additional JT compressor mass and CCE mass of 4.1 kg and 3.8 kg (not incl. structural support)

Cases	Total Bus DC Power (W)	T _{sink} (K)	P _{Low,comp} (bar)	P _{High,comp} (bar)	T _{precool} (K)	Q _{ext_load} at T _{Precool} (mW)		Q _{JT} (K) (mW)	Flow Rate (mg/s)
Existing JT Restriction	400	275.0	2.448	8.152	16.21	236	4.5	48.7	16.58
Optimized JT Restriction*	410	275.0	2.443	8.135	16.66	236	4.5	52.8	20.66

*The mass flow rate with optimized JT restriction is used as the requirement for compressors

Performance Sensitivity Study

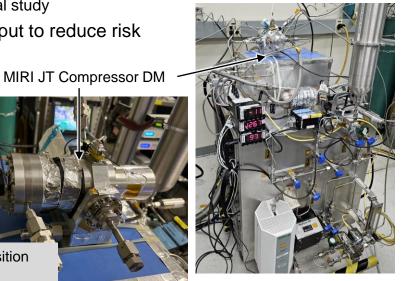
- Heat sink temperature
 - Lowering T_{sink} increases compressor mass flow rate
 - Lowering T_{sink} enhances PT precooler performance and thus decreases JT precooling temperature
 - 273 K is baseline T_{sink} to enhance cooling power
 - 29% higher cooling power at 4.5 K than with a 314 K heat sink
- Precooling temperature
 - Reducing T_{precooling} from 18K to16K increases cooling power by about 23.7%.
- JT stage cooling temperature
 - Increases cooling power by about 8% for every 0.1K increase


Jet Propulsion Laboratory

California Institute of Technology

Cooldown through JT Pinch Point

- Payload parasitic is very low at beginning of JT stage cooldown because
 - Entire payload is in an environment at JT stage precooling temperature
 - All active heat loads are not turned on
 - Much more benign conditions than MIRI where it has no bipod heat intercepts
- Net available cooling power for payload is high right after Pinch Point traverse
- Even with a very large mass of 550 kg, predicted cooldown time from 14 K to 4.5 K is only about 2 days
 - After ~30 days of cooldown from 150 K to 14 K using passive cooler and active cooler
- Traversing the Pinch Point is not a concern for PRIMA

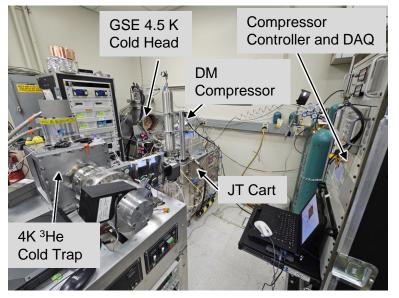


Piston Position

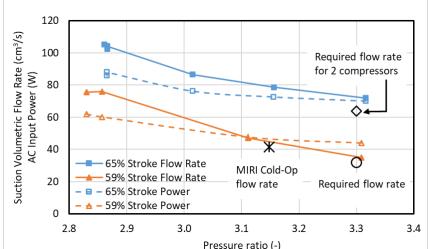
MIRI DM Compressor Testing

- Motivation
 - PRIMA design pressures are lower than MIRI operating condition
 - Lower gas spring stiffness for pistons, reducing piston resonance frequency
 - Decrease mass flow rate
 - ³He as working fluid instead of ⁴He in MIRI cooler
 - · Assume same volumetric flow rate capability in initial study
 - Directly measure flow rate capability and power input to reduce risk
- MIRI JT compressor Development Model (DM)
 - Nearly identical to flight MIRI compressor
 - Has piston position sensor (NOT in flight model) to
 - Provides critical information needed for safe operation
 - Allows direct measurement of piston stroke margin
 - Provides key information to adjust piston DC position

JT Cart with Support Equipment



Test Facility


- Based on an existing facility developed for MIRI cooler
 - COTS electronics controls compressor operation and records flow conditions
 - Chiller and HXs control compressor and inlet and outlet flow temperatures
 - Vacuum pump system, particulate filters and a getter to remove contaminants
 - Mass flowmeters, pressure transducers and temperature sensors
- Plumbing system to
 - Pneumatically determine piston hard stops and max stroke length
 - Bleed valve to adjust piston backside pressure and their DC position
- Have features to support subsequent ³He tests
 - COTS GM cooler and recuperator for JT effect testing
 - ³He cold trap for pressure boosting and gas recovery

Compressor Performance

Jet Propulsion Laboratory California Institute of Technology

- Natural frequency
 - 74 Hz at P_{in} = 2.31 bar and P_{out} = 7.79 bar
 - 13% lower than MIRI's 85 Hz at P_{in} = 3.83 bar and P_{out} = 12.90 bar
- DM compressor has substantial performance margin against flow rate requirement at target pressure ratio of 3.3
 - Can achieve more than 2x required flow rate with piston DC position slightly biased toward fore end
 - Piston stroke is still < 70% distance between hard stops
 - Motor I²R loss is much below 28 W limit
 - Compressor AC input power is only 63 W at 2x volumetric flow rate
 - Flow rate increases very quickly as stroke length increases
 - Will determine actual flow rate margin with flight-like piston DC offset control over a range of operating conditions

Discussion

- Flight CONOPS may require a higher stroke margin than preliminary ground test to date
 - Piston DC position will change with compressor temperature and system pressures
 - Require additional stroke margin
 - · To meet steady-state cooling requirement over a wide range of sink temperatures
 - Accommodate transient operation during cooldown
- Test data from integrated flight spare cooler acceptant test during Cold-Op also confirms FM flow rate capability
 - DC offset and piston stroke were controlled by MIRI CCE flight software
 - 41.6 cm³/s suction flow rate is 30% higher than required value of 31.9 cm³/s for 1 compressor
 - Assume suction volumetric flow remains the same for ³He

Date & time completed	T _{sink} (K)	P _{Low} (bar)	P _{High} (bar)	T _{precool} (K)	3 rd PT Stg. Ext. Load (mW)	T _{c—JT} (K)	Q _{JT} (K) (mW)	M _{dot} (mg/s)	V _{dot} (cm³/s)
2/19/16 2:19	249.0	2.64	8.31	17.693	203.32	5.540	56.47	21.2	41.6
Requirement for 1 ³ He Compressor	275	2.44	8.14						31.9

Conclusions

- PRIMA cooler is a slightly modified JWST MIRI cooler
 - Adding one MIRI JT flight compressor/CCE to an existing spare flight MIRI cooler
 - ³He instead of ⁴He working fluid to lower cooling temperature
 - All key subsystem and component hardware are at TRL 9
 - Predicted cooling power: 53 mW at 4.5 K and 230 mW at 18 K
 - >2x CBE heat loads
 - Mass: 68 kg, including CCEs and relay
 - CBE bus input power: 410 W
- Feasibility of achieving design suction volumetric flow rate has been demonstrated with ⁴He
 - Compressor can achieve a flow rate much higher than requirement at target pressure ratio, while still meeting compressor input power and stroke margin requirement
 - Actual margin in flight model might be lower but still higher than requirement
- Next steps:
 - Characterize compressor flow rate capability with ³He
 - Measure ³He JT effects under PRIMA design conditions

7/17/2023

This document has been reviewed and determined not to contain export controlled technical data.