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Motivation for Heated-Tube Boiling

Modeling

In-space tank-to-tank propellant Tank-to-pump propellant feedline

transfer line

Application:
Application: -Ascent and Descent Stages
-Cryogenic fuel depots -Nuclear Thermal Propulsion (NTP)

Credit: ULA
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Informs insulation design and/or degree of
propellant subcooling needed




rr

Background: Flow Boiling
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Background: Cryogenic Boiling Heat
Transfer Correlations

* Most codes use non-cryogenic correlation to model cryogenic boiling

 Starting in 2019, Purdue University in collaboration with NASA Glenn
Research Center developed the first-ever set of universal cryogenic flow
boiling correlations

» After careful filtering of the data, over 9,000 usable cryogenic data points
resulted

Correlations developed:

Onset of nucleate boiling (ONB) Nucleate boiling

Critical heat flux (CHF) Rewet temperature

Inverted annular film boiling (IAFB)  Dispersed flow film boiling (DFFB)
Steady state two-phase pressure drop

Fluids include:
He, H,, Ne, Ar,
N,, CH,

Most of the data are predicted within 25%




Backgrounc
Simulation

. Generalized Fluid System
Program (GFSSP)

System level CFD code developed at NASA in the early 90s

Fluid Nodes: mass and
energy equations are
solved for pressures and
enthalpies

Fluid Branches:
momentum equation
is solved for flowrates
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Fluid network }

Solid network }

User subroutines
are added for
advanced physics
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conjugate heat equation is solved for wall Conductors

transfer temperature




Model Inputs

Glickstein1967, LCH4 Upward Flow
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Two types of cases:

1.
2.

zCHF-predicted cases
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L=31.97in =812 mm

Di = 0.345 in = 8.763 mm

zCHF-fixed cases (to ensure pre-CHF correlations are only applied to pre-CHF data points)
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s GFSSP vs. test data:

(a) Case 1 (all points)
(b) Case 2 (pre-CHF points only with fixed zCHF)
(c) Case 3 (post-CHF points only with fixed zCHF)




Results: Glickstein and Whitesides [1] CH,
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GFSSP vs. test data:
(a) Case 1 (high ")
(b) Case 2 (mid q”’)
(c) Case 3 (low q”)

* Note points near CHF
affected by axial
conduction

 “Bump” in the post-CHF
region occurs where flow
become single-phase
vapor
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Results: LeW|s et al. [2] N,
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Results: Lewis et al. [2] N, (Case 268)

600 250
500
x @ 200
x
400
» —
A 150
° £
¥ 300 =
= x - — —g"(DNB
o ¥ TestData = @ one)
= \ " [Dryout
@ Predicted o 1 9" (Bryout)
T 100 \ g" (applied)
200 1
A
A
A
50 A
W g d a0 a0 eeeee ° .o
0 0
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 a0 a5

z [em] z [cm]

GFSSP overpredicted the location of CHF in 12 of the 16 cases
considered (average error of 8.9% normalized by pipe length)

GFSSP underpredicted the location of CHF in 3 of the 16 cases
considered (average error of -7.0% normalized by pipe length)
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Results: Lewis et al. [2] N, (Case 327)
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GFSSP incorrectly predicts the type of CHF in only one case
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Results: Qietal. [3] N,
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Results Qi et al. [3] N, (Sample Case)
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GFSSP correctly predicted the occurrence of CHF in the one case it was observed.
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Conclusions

e Using GFSSP with universal Purdue University cryogenic flow boiling
correlations:
* Glickstein and Whitesides [1] CH, has SMAPE of 14.5%
* Lewis et al. [2] N, has SMAPE of 22.2%
* Qi etal. [3] N, has SMAPE of 26.0%

 When predictive errors occur, the chief culprit is the type and location
of the CHF
* CHF predictions are excellent for Glickstein and Whitesides [1]

* CHF predictions are excellent for Lewis et al. [2] (only one mis-prediction of
CHF type)

* For Qi et al. [3] CHF is usually predicted but not observed.
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