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*  When the vapor bubble flows into the

M condenser section, it condenses into liquid

resulting in a pressure decrease.
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* When heat is applied on the evaporator, the
pressure of the vapor plug is increased.

b ' -Z * Theincreased vapor pressure helps the fluid

overcomes the capillary forces, gravitational
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forces.
Schematic of a Pulsating Heat Pipes (PHP) [1]

Self sustained thermally driven oscillations

Evaporator
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1. Cooling panel
g 1A.0HP
2. Coil windings
8./ 3. Cooling channel
‘ of refrigerant
\ 4. Inner bobbin
5. Outer bobbin
6. End plate
The PHP embedded in the HTS magnet [2] Heating part Cooling part
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The PHP prototype cools down the spectrometer PHP has a much lower AT[3]
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PHP with a small number of turns has good thermal . . .
; tal heat load h'Ig PHP with a | Although 48-turn can achieve maximum heat capacity at
erformance at a lower heat load while a with a large . .
P & 1200[mW], but if we split 1200[mW] on a total of 48 turns,
number of turns has a good heat transfer performance at a
each turn only takes around 25[mW].

higher heat load.
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1-turn PHP 3-turn PHP S-turn PHP 7-turn PHP

Fill Line Fill Line Fill Line

Fill Line

1 2345 678 91011121314 5 678 91011121314 1 2345 678 91011121314

The number of turns of my PHP can change from 1 to 3 to 5 and 7 turns. With this design,
we will be able to determine the optimal heat transfer per turn for a nitrogen PHP.
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Rosemount Pressure Gauge
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The Condenser (left) and Evaporator (right) sections
Locations of PRTs on each PHP are marked as ‘T’ and the
locations of the pressure sensors are marked as ‘P’ in the

The adiabatic section between the condenser and evaporator is 1m. schematic. Only PHPL has pressure transducers installed. The
locations

* The capillary tube is made from 304 stainless steel with an I.D. of
0.5mm and an O.D. of 0.8mm.
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Experimental Test Teong [K] Initial Fill Ratio [%]
1 84.5 50
2 84.5 63
3 84.5 75 Fill Ratio: FR = VOl”q“id/VolpHP
4 77.4 50
5 77.4 63
6 77.4 75

A total of six experimental tests have been conducted on the PHP with two different condenser
temperatures and three different fill ratios.

The heat transfer performance of the PHP is evaluated by the effective thermal conductivity:

k = oL
e NAC(TB - Tc)
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« The maximum dry-out limit of the PHP assembly is observed at 4.19 W of total heat load at the condenser
temperature of 84.5 K and the initial fill ratio of 75%

* The optimal effective thermal conductivity of PHP1 is 1,048,000 W/m-K when 0.81 W is applied on each PHP (a
total of 1.62 W on the PHP assembly) at the condenser temperature of 84.5 K and the initial fill ratio of 63%.

* The optimal effective thermal conductivity of PHP2 is 838000 W/m-K when 1.32 W is applied on each PHP (a
total of 2.64 W on the PHP assembly) at the condenser temperature of 84.5 K and the initial fill ratio of 63%..
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Effective Thermal Conductivity vs Heat Load on Each PHP Time Averaged Pressure vs Heat Load on the PHP1
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* The PHP reaches dry-out and is then re-booted at the heat load of 1.08 W for each PHP.

* Inthe reboot run, both PHP subsections can operate with the heat load on each PHP from 1.08 W to 1.72 W. PHP2
dries out at a heat load of 1.82 W.

* After the reboot, the difference in the effective thermal conductivity between PHP1 and PHP2 is much smaller.
Between 1.08 W and 1.32 W, the percentage difference is less than 10%.
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Effective Thermal Conductivity vs Heat Load on Each PHP )
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*  PHP1 exhibited dry-out behavior and rebooted at both 1.32 W and 1.43 W on each PHP.

* After the dry-out limit was reached, various experiment runs at heat load levels of 0.48 W, 0.60 W, 0.68 W, 0.81 W,
0.99W,1.32W, 1.43 W, and 1.73 W were repeated.

* The difference in the time-averaged mean pressure between the original and repeated runs is insignificant, even
though the difference in effective thermal conductivity of PHP1 is significant.
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Summary

The maximum dry-out limit of the PHP assembly is observed at 4.19W of total
heat load at the condenser temperature of 84.5K and initial FR of 75%

PHP subsection dries out at moderate heat load but can be rebooted with
continued performance to higher heat loads.

The effective thermal conductivity of the PHP subsection differs drastically
before and after the reboot process.

Gradual increase in the overall system pressure is observed in the FR of 50%
and 63% fill ratio tests. The huge leap in the overall system pressure after the
PHP reboot is observed in the 75% fill ratio runs.

For future measurements, the PHP test rig will be modified to operate with 3-
turn, 5-turn, and 7-turn PHPs in the parallel configuration but using the same
condenser temperature and fill ratio conditions as with the single-turn PHP.
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This project is done under the support of Sumitomo (SHI)Cryogenics America.
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