

C2Or3D-06: Characterization of centrifugal compressors operating in FRIB's sub-atmospheric system

J. Howard, A. Engeda, P. Knudsen, N. Hasan, V. Ganni

Background [1]

- Facility for Rare Isotope Beams
 - User facility for the U.S. Department of Energy Office of Science
 - Produces rare isotopes utilizing the worlds most powerful heavy-ion accelerator
 - Built to enable discoveries in the following areas:
 - » Properties of rare isotopes
 - » Nuclear astrophysics
 - » Fundamental particle interactions
 - » Medicine, homeland security

Michigan State University

Background [2]

- Heavy ions are accelerated in the linear segments of the beam line by employing superconducting radio-frequency (SRF) cavities
- SRF cavities operate at temperatures below the standard boiling point of helium (4.2 K @ 1 bar), at FRIB this temperature is ~ 2 K
- A reduction of bath pressure is require to reach saturation conditions which meet the temperature requirements (pressure ~ 30 mbar)

Background [3]

- Common methods for reducing the helium bath pressure involve systems with centrifugal compressors, warm vacuum compressors, or a combination using both types
- Selection based on:
 - Performance
 - » Efficiency
 - » Turndown
 - Complexity
 - Contamination risk
 - » In-leak
 - » Compressor oil
 - Equipment size
 - » Compressors
 - » Heat exchangers

Cold-Compression

Warm-Compression

Mixed-Compression

Michigan State University

FRIB Cryogenic System [1]

- FRIB utilized a full cold-compression system
- Cold-compression typically involves multiple centrifugal-type compressor in series, with isentropic efficiencies near 75%
- FRIB cold-compressor system consists of 5 centrifugal type compressors with 5-axis magnetic bearings (Knudsen et al., 2019)

FRIB Cryogenic System [2]

- Centrifugal cold-compressor train control
 - Currently based on compressor characteristics found through experimentation
 - Compressor rotational speeds are electronically coupled to each other through specified gearing ratios derived from experimentation
 - Requires actively exploring new operational regions of interest, limiting the flexibility of the 2 K cryogenic system
- Accurate prediction of cold-compressor performance will allow for highefficiency and reliable wide range operation of the 2 K helium cryogenic system
 - Rotational speeds
 - Total pressure ratio
 - Anticipated efficiencies
 - Surge and choke margin estimation

Model Development [1]

- Different methods for performance prediction vary in complexity
 - One-dimensional station-based models
 - Three-dimensional computational fluid dynamic models

- Cryogenic cold-compressor performance prediction constraints:
 - Minimal computational cost/time
 - Limited required geometrical information
 - Simple model interface

Model Development [2]

- Constraints lead to the development of a one-dimensional model used to estimate performance of the cold-compressors (Howard et al., 2023)
- Basis of 1-D model:
 - Laws of thermodynamics
 - Momentum Conservation
 - Compressible flow equations
 - Ideal gas equation of state
- One-dimensional model is segmented with 5 distinct station locations:
 - Impeller Inlet
 - Impeller Outlet / Diffuser Inlet
 - Diffuser Outlet / Volute Inlet
 - Volute Outlet / Exit Diffuser Inlet
 - Exit Diffuser Outlet

Model Development [3]

- Pressure and efficiency calculations at the impeller outlet implemented empirical models for individual enthalpy loss mechanisms present in the compression process
- Loss employed are split into two separate categories:
 - Internal Losses
 - » Blade loading
 - » Choking
 - » Clearance
 - » Incidence
 - » Mixing
 - » Skin Friction

Model Development [4]

- Each loss mechanism described have empirical correlations available in open literature, with many of the losses having many correlations
- Recommended set of loss correlations:

Loss Mechanism	Air (Howard et al., 2023)	Helium (Present Study)	
Blade Loading	Coppage et al. Aungier		
Choking	Aungier	Aungier	
Clearance	Jansen	Jansen	
Disk Friction	Daily & Nece	Daily & Nece	
Incidence	Galvas	Aungier	
Leakage	Aungier	Aungier	
Mixing	Johnston & Dean	n & Dean Aungier	
Recirculation	Oh et al.	Oh et al.	
Skin Friction	Aungier	Coppage et al.	

FRIB Measured Data

Operational modes that were chosen to compare against the developed model included:

Operatin	g Modes:	Minimum (Design)	Nominal (Operational)	Nominal (Design)	Maximum (Design)
ṁ	[g/s]	104.5	128.3	151.0	180.4
P _i	[bar]	0.029	0.029	0.029	0.029
T _i	[K]	4.166	4.206	4.094	4.015
N_1	[Hz]	234	240	235	257
N_2	[Hz]	465	457	468	490
N_3	[Hz]	663	667	671	695
N_4	[Hz]	761	776	808	816
N_5	[Hz]	762	776	809	817

Model Results [1]

- Individual cold compressor performance prediction
 - Cold compressor performance was independently tested for each of the cold compressors given measured inlet conditions
- Pressure ratio (red circles) and temperature ratio (green triangles) generally follow the trends observed during testing
 - Largest pressure ratio error observed for CC3
 - Largest temperature ratio error observed for CC2

Model Results [2]

- Isentropic efficiency of the cold compression process was calculated based on input and output parameters
- Efficiency estimation (blue diamonds) were predicted to be nearly constant between 75% and 80%
 - Prediction of the efficiency did not properly follow calculated efficiency from the measured data
 - More investigation into loss model selection and methodology is necessary

Model Results [3]

- Cold compressor train performance prediction
 - Inlet conditions were provided to CC1, but subsequent cold compressor inlet conditions were taken from the previous cold compressor calculated outlet
 - CC1 tended to underpredict the pressure ratio (red circles), while the rest of the compressor train overpredicted pressure ratio
- Temperature ratio (green triangles) was consistent with trends observed in the measured data

Model Results [4]

- Isentropic efficiency estimation (blue diamonds) were again predicted to be nearly constant between 75% and 80%
 - The largest error was observed for CC3

Model Results [5]

Compressor train outlet static pressure prediction

- Pressure rise across the compressor train was compared to measured data
- Nominal condition estimation agrees well with the measured data
- Minimum and maximum design conditions both over-predicted the pressure ratio over the compressor train

Model Results [6]

Surge and choke estimation for CC1 and CC2

Summary

- Accurate prediction of cold-compressor performance will enable more robust and efficient control and operation of the sub-atmospheric cryogenic system at FRIB
- Modifying a previously developed centrifugal compressor performance methodology, performance characterization of cold-compressors operated at FRIB was enabled
- Performance estimation was compared to measured data captured during FRIB compressor testing
 - Pressure ratio and temperature ratio estimation showed reasonable agreement over the range of operation considered
 - Isentropic efficiencies were inconsistent with measured efficiencies, and require further investigation into loss correlation selection and methodology
 - Surge and choke estimation showed reasonable agreement

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Questions?

Thank you!

Email: howardj@frib.msu.edu