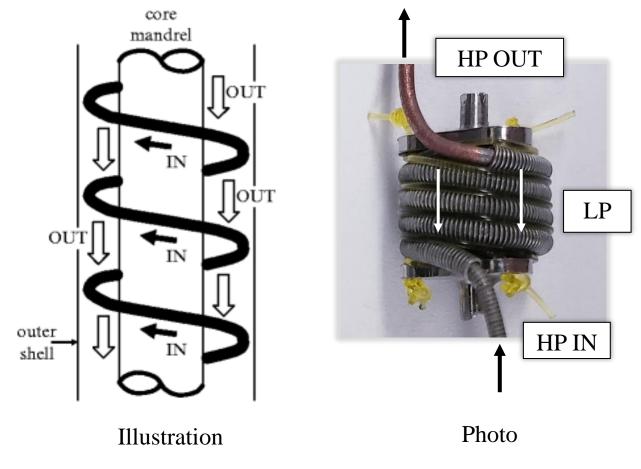
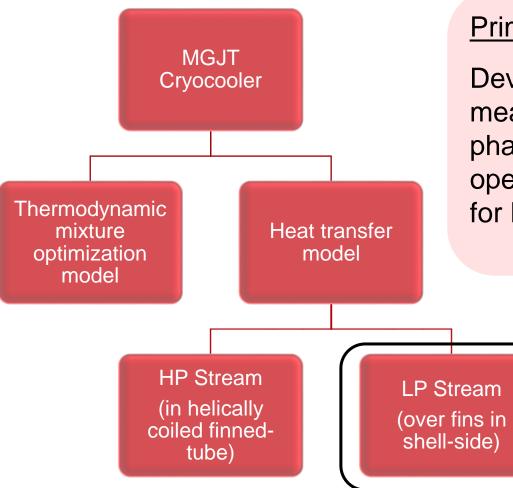


Outline:

- 1. Background and Motivation
- 2. Primary Objective of Research
- 3. Design Considerations for the Test Section
- 4. Fabrication of the Test Section
- 5. Experimental Measurements and Discussion
- 6. Conclusions and Future Work


Background and Motivation:

- Recent advances increased interest in Joule-Thomson (JT) cryocoolers with cooling potential from 125 to 150 K
- To achieve high efficiency and use a low-cost compressor, must provide cooling at low pressure ratios and values of operating pressures
- Under these conditions research has shown using a suitable mixed gas can provide greater cooling capacity than pure fluid

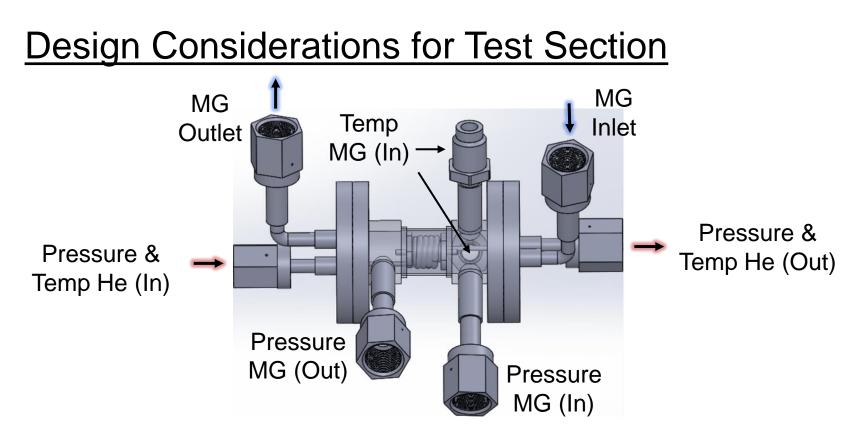


Background and Motivation:

 Coiled Finned-tube heat exchangers are most widely used hx for miniature JT cryocoolers (also known as Giauque-Hampson hx)

Background and Motivation:

Primary research objective:

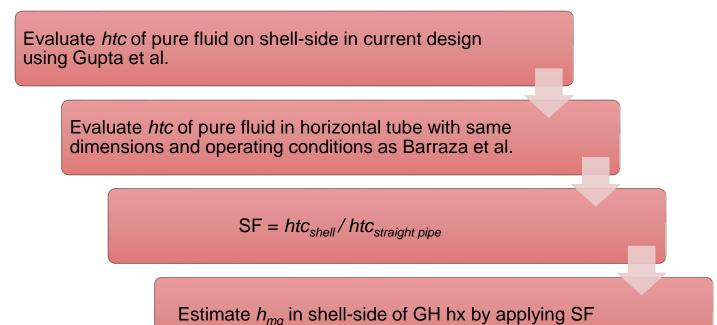

Develop test facility capable of measuring the shell-side twophase htc for GH hx at operating conditions of interest for MGJT cryocooling

Primary Objective of Research

• Develop test facility capable of measuring shell-side h_{mg} of GH hx at operating conditions of interest for MGJT cryocooling

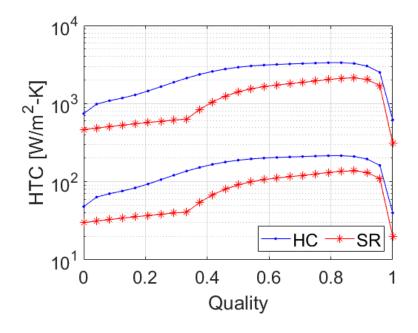
Operating Parameter	Value	
Inlet temperature of MG $(T_{in,mg})$	110-300 K	
Mass flow rate of MG (\dot{m}_{mg})	0.05-0.15 g/s	
Inlet pressure of MG ($P_{in,mg}$)	345-862 kPa (50-125 psi)	
Inlet pressure of He $(P_{in,he})$	862 kPa (125 psia)	
Operating fluid	Range of gas mixtures composed of	
	Ar, butane, ethane, methane, R14,	
	R23, R32 and N_2	

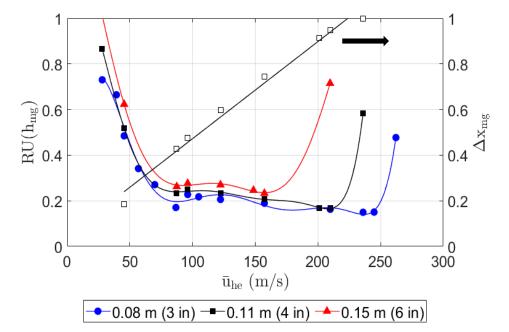
Geometry - helically coiled finned-tube -70/30 CuNi tube with D_i, D_o and D_f of 0.49, 0.97, and 1.46 mm (0.019", 0.038" and 0.057")
Fin density of 3.94 fins per millimeter (100 fins per inch)



- Heat load is applied to gas mixture via interaction with helium in coiled finned-tube
- From measurements of flow rates and inlet and outlet conditions, conductance of hx is determined
- \overline{h}_{he} is well-known and R_{he} is small from experimental set-up. Therefore h_{mg} is determined from total resistance.

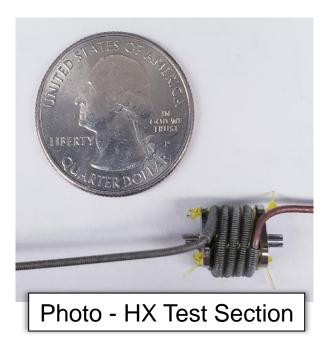
Design Considerations for Test Section


Length of Finned High-Pressure Tube

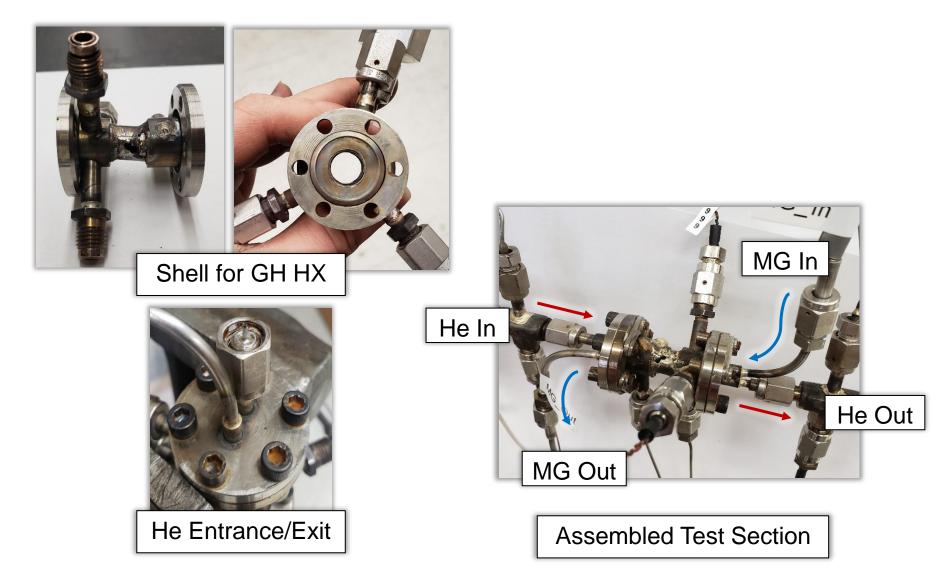

- Analysis required to understand tradeoff between the uncertainty of h_{mg} and change in quality of the mixed gas
- No correlation available to predict even the magnitude of the *htc* for two-phase multi-component mixture

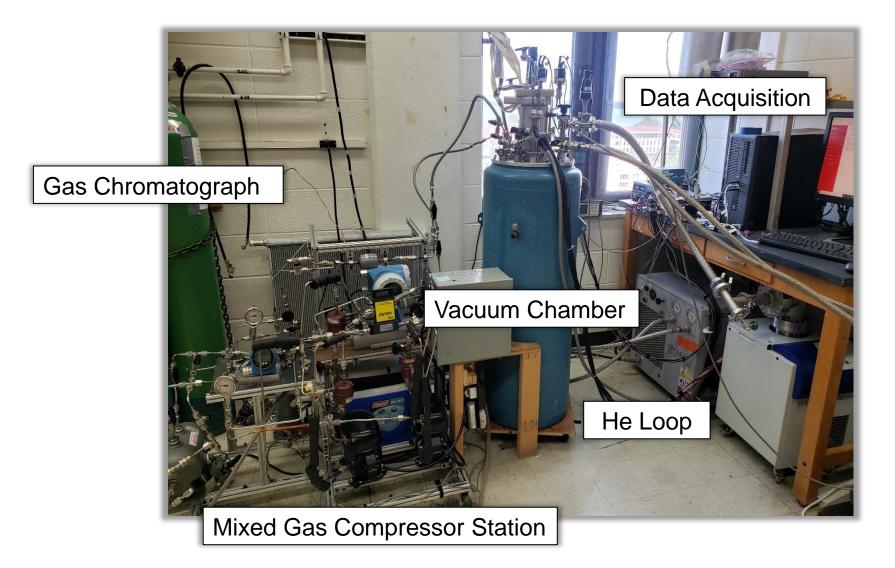
Design Considerations for Test Section

Length of Finned High-Pressure Tube

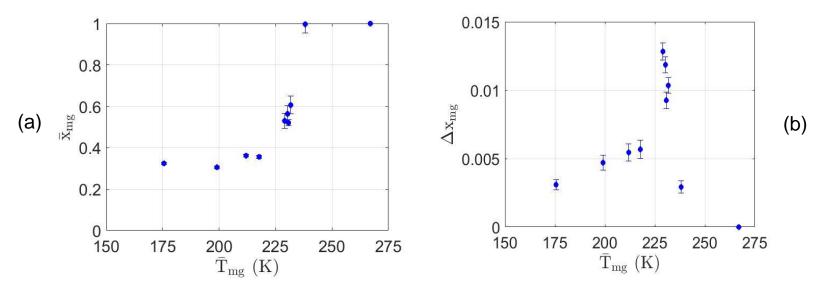

• Using SF, h_{mg} is predicted to fall between the very large range of 20 to 3000 W/m²-K

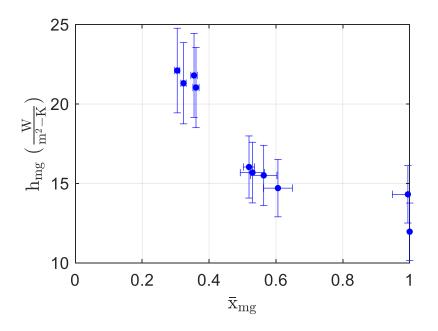
- RU analyzed using greatest predicted h_{mg}
- Target helium flow rate of 85 m/s and length of 0.11 m (4 inch)


Fabrication of the Test Section



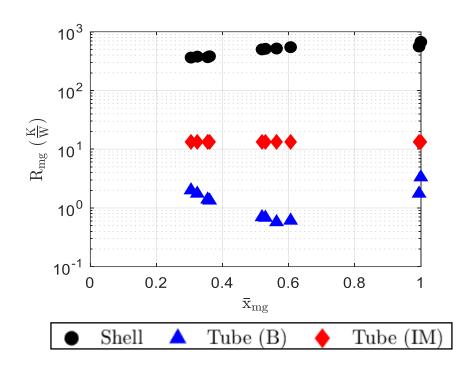
Fabrication of the Test Section




Experimental Test Facility

Operating Conditions -

	Parameter	Operating Range	
Mixed Gas	Inlet Temperature, T _{mg,in}	174-267 K	
	Inlet Pressure, $P_{mg,in}$	268-311 kPa (39-45 psi)	
	Mass flow rate, \dot{m}_{mg}	0.15-0.16 g/s	
	Molar fraction of R32	0.67-0.86	
	Molar fraction of R14	0.33-0.14	
Heliu m	Inlet Temperature, T _{he,in}	226-275 K	
	Inlet Pressure, P _{he,in}	608-721 kPa (88-105 psi)	
	Volumetric flow rate, \dot{V}_{ref}	0.19 L/min	



- Measured h_{mg} ranges from 12-22 W/m²-K with uncertainties of 12-15%
- h_{mg} in two-phase region (0.32-0.61 for data collected) is increased compared to quality of 1
- Reveals that the h_{mg} may be dominant thermal resistance in hx for these flow conditions

Source	Correlations	Reynolds Number	Dimensions
Croft and Tebby	Single-phase pure fluid	Not reported	$D_o = 8.1 mm (0.32")$ $h_f = 4.1 mm (0.16")$
Gupta et al.	Single-phase pure fluid	500 < <i>Re_f</i> < 1900	$\begin{array}{l} D_o = 11 \; mm \; (0.42") \\ h_f = 1.4 \; mm \; (0.06") \\ D_c = 145 \; mm \; (5.7") \end{array}$
Timmerhaus and Flynn	Single-phase pure fluid	$400 < Re_{D_h} < 10,000$	Annular-flow with helical fin from mandrel to shell
Howard et al.	Single-phase pure fluid	$100 < Re_{D_h} < 10,000$	$\begin{array}{l} D_o = 10 \; mm \; (0.38") \\ h_f = 6.4 \; mm \; (0.25") \\ D_c = 143 \; mm \; (5.7") \end{array}$
Test Section	Two-phase multi- component mixture	$10 < Re_{D_h} < 40$	$\begin{array}{l} D_o = 1.5 \; mm \; (0.04") \\ h_f = 0.5 \; mm \; (0.01") \\ D_c = 7.9 \; mm \; (0.31") \end{array}$

- Single-phase pure fluid correlations not suited for two-phase multicomponent mixtures
- Reynolds number and test section dimensions are a magnitude lower


- Tube (B) $R_{mg,t}$ estimated by SF from data of Barraza et al. $h_{mg,t} \approx 2000 - 14,000 \text{ W/m}^2\text{-K}$
- Tube (IM) $R_{mg,t}$ estimated by 75% reduction of ideal mixture $h_{mg,t} \approx 500 \text{ W/m}^2\text{-K}$

- $R_{mg,s}$ is over a magnitude larger than conservative estimate of $R_{mg,t}$ and two magnitudes larger than estimate using Barraza et al.
- $R_{m,g}$ in shell is significantly larger than in helically coiled tube

Conclusions & Future Work

- Return stream in a GH hx is often neglected during JT cryocooler design
- Data collected clearly demonstrates the need for and importance of developing accurate correlations at these operating conditions
 - Offers magnitude of h_{mg}
 - Demonstrates thermal resistance of LP stream is significant
 - Provides insight to flow characteristics indicates low velocity gas flow
- Future work includes a large test matrix for multi-component mixtures with varying geometrical parameters at operating conditions associated with MGJT cryocoolers
- With the large data campaign proposed and enabled by the test facility developed in this work, correlations can be developed

Questions? Thank you!

