#### Cryogenic Thermal Performance of the Vacuum Insulation System for LH<sub>2</sub> Storage Tanks

#### D.H. Lee<sup>1</sup>, H.J. Jeon<sup>1</sup>, **Y.J Jeong**<sup>1\*</sup>, T.U Park<sup>2</sup>, T.M. Cho<sup>2</sup>, T.W Kim<sup>3</sup>, S.K Kim<sup>3</sup>, C.S. Bang<sup>2</sup> J.M Lee<sup>1,3†</sup>

<sup>1</sup>Department of Naval Architecture and Ocean Engineering, Pusan National University <sup>2</sup>Green Energy Technology Center (Hydrogen Technology), Samsung Heavy Industries <sup>3</sup>Hydrogen Ship Technology Center, Pusan National University

#### CEC/ICMC-2023 Hawaii Convention Center The 25<sup>th</sup> joint CEC/ICMC Conference

Honolulu, Hawaii, July 9-13, 2023: www.cec-icmc.org









- Cryogenic liquids: liquefied gases that are kept in their liquid state (boiling point below -150°C)
- Extremely cold and small amounts of liquid can expand into very large volumes of gas
- ✓ Most cryogenic liquids can be placed into Inert gases, Flammable gases, and Oxygen:
  - Inert Gases: They do not react chemically to any great extent (Nitrogen, Helium, Neon, Argon, and Krypton, etc.)
  - Flammable Gases: They produce a gas that can burn in air (Hydrogen, Methane, Liquefied natural gas, etc.)

| Gas            | Boiling point(°C) | Latent<br>heat(kJ/kg) | Туре      | Volume ratio<br>(liq→gas) |
|----------------|-------------------|-----------------------|-----------|---------------------------|
| LNG            | -161.5            | 512                   | Flammable | 600                       |
| H <sub>2</sub> | -252.75           | 447                   | Flammable | 800                       |
| N <sub>2</sub> | -196.15           | 199                   | Inert     | 800                       |
| Не             | -268.95           | 21                    | Inert     | 700                       |
| 02             | -183.15           | 213                   | Reactive  | 800                       |
| Ar             | -185.85           | 162                   | Inert     | 800                       |







#### Hydrogen Energy

- ✓ Hydrogen Energy: Enormous quantities in water, hydrocarbons, and organics.
- Zero-emission fuel when burned with oxygen.
- ✓ No restriction on the energy resource because it produced from water.
- ✓ Current application: Vehicles, electric devices, and the propulsion of spacecraft, etc.

#### Storage and Transport

- ✓ Stored and transported as a liquid state (like LNG)
- Liquid hydrogen requires cryogenic storage and boils around -253 °C.
- ✓ Necessity to develop well insulated LN2 CCS to prevent boil-off gas.













# Cylindrical tank for calculation of insulation thickness to achieve BOR 0.3%/day

- Gross Volume : 1,800 m<sup>3</sup> (typical fuel tank size on board)
- Diameter : 9,000 mm
- Material : 9% Nickel
- Design Pressure : 5 barg (IMO Type-C)
- Insulation : Polyurethane Foam (0.0245W/mK)
- Target BOR : 0.3% vol./day

 $BOR = \frac{\sum Q \times 3600 \times 24}{H \times V \times o} \times 100\%$  $\Sigma Q_i$  = Total Heat Ingress (W) V = Volume (m<sup>3</sup>) = Liquid Density  $(kg/m^3)$  H = Latent heat (KJ/kg)D  $\sum Q_i = A_i \cdot \Delta T \cdot \frac{\lambda_i}{L_i}$  $\lambda_i$  = Thermal Conductivity (W/mK) A = Surface Area (m<sup>2</sup>)  $\triangle T$  = Temperature Difference *Li* = Thickness of Insulation LNG LH<sub>2</sub> 216 32 Latent Heat, MJ/m<sup>3</sup> **BOR, %/day** 0.309 0.302 Insulation Thickness, mm 300 3300 Insulation Insulation Over 10 times

#### Liquefied Hydrogen(LH2)



Reduced storage due to increased insulation thickness





#### (CCS Overview)

- Cylinder-shaped pressure tank verified as cargo hold for vessel
- Easier to manufacture than membrane type, but insulation problem exist in the curved part

#### (Insulation System)

- MLI and Powder type vacuum insulation system
- Strength/Thermal conductivity compared to high-performance FRP support

#### (Material and Structure)

- High manganese steel, Stainless steel
- Internal stiffened and vacuum ring







#### **Option 1. Low Vacuum System**

- ✤ Vacuum Pressure : 1000 millitorr <</p>
- **Conductivity : 10mW/m-K**
- SOFI + Vacuum Insulation System
- Spray on the foam insulation + MLI system
- Prevent conduction with polyurethane foam
- Advantages for large size due to low vacuum

**Option 2. Mid Vacuum System** 

- Vacuum Pressure : 1 1000 millitorr
- Seffective Thermal Conductivity : 1mW/m-K
- Filler + Vacuum Insulation System
- MAT and powder type material as inner filler
- Radiant heat shielding effect by the material itself
- High thermal insulation performance at low vacuum

**Option 3. High Vacuum System** 

- ✤ Vacuum Pressure : < 1 millitorr</p>
- Effective Thermal Conductivity : 0.1mW/m-K
- MLI + Vacuum Insulation System
- Highest thermal insulation performance
- Prevent conduc. and convec. heat by high vacuum
- Suitable for small and medium LH<sub>2</sub> storage tank



Cryostat-4

- ✓ High vacuum system is the best in terms of thermal conductivity, but exist limitation of technology & expense cost
- ✓ Applying the low medium vacuum system for ships cargo tank is realistic in large amount of LH2 storage



Cryostat-1

Cryostat-2



#### ✓ Specimen Type

Cylindrical

- Sample type : Film, Powder, Foam

Spherical

- Sample type : Powder

#### **Flat Plate**

- Sample type : Film, Powder, Foam

 $\times$  Calculated heat flow rate (Q)

$$k_e = \frac{4Qx}{\pi d_e^2 \Delta T}$$
$$Q = V_{gSTP} \rho_{gSTP} h_{fg} \frac{\rho_f}{\rho_{fg}}$$

Qx

 $\overline{\pi d_0 d_i \Delta T}$ 

 $k_e = \frac{Qln(\frac{a_0}{d_i})}{2\pi L_e \Delta T}$ 

 $k_e =$ 

| Nomenclature   |                                                  |                   |
|----------------|--------------------------------------------------|-------------------|
| Symbol         | Description                                      | Unit              |
| V <sub>g</sub> | Volumetric Flow Rate of Gas                      | m³/s              |
| Pg             | Density of Gas                                   | Kg/m <sup>3</sup> |
| $H_{fg}$       | Heat of Vaporization                             | J/g               |
| Х              | Insulation thickness                             | m                 |
| d <sub>e</sub> | d <sub>e</sub> Diameter, effective heat transfer |                   |
| ΔΤ             | ΔT Temperature difference (WBT-CBT)              |                   |
| Q              | Heat flow rate                                   | W                 |



Cryostat-1

Cryostat-2



### **TEST SCENARIO**



Verification of Previous studies for data of manufacturing facility

- ✓ High Vacuum application material : MLI, Glass Bubble
- ✓ Medium vacuum application materials : MLI, Glass Bubble, Aerogel Blanket
- ✓ Low vacuum application materials: Glass Bubble, Aerogel Blanket

| Classification |                | Insulation      | Deg. of<br>vacuum | Keff (mW/mK) |
|----------------|----------------|-----------------|-------------------|--------------|
| Vac<br>uum     | High<br>vacuum | MLI             | 0.001             | 0.023        |
|                |                | Vacuum only     | 0.003             | 10.44        |
|                |                | Glass bubble    | 0.003             | 0.69         |
|                | Soft<br>vacuum | MLI             | 1                 | 0.082        |
|                |                | Vacuum only     | 1                 | 12.52        |
|                |                | Glass bubble    | 1                 | 0.71         |
|                |                | Aerogel blanket | 1                 | 1.64         |
| No-Vacuum      |                | Vacuum only     | 760000            | 62.37        |
|                |                | Glass bubble    | 760000            | 25.61        |
|                |                | Aerogel blanket | 760000            | 11.24        |





#### (Fesmire, 2015)





Thermal conductivity for various material and fitted results





### **TEST PROCEDURE**

# **TEST APPARATUS**





#### Method by C1774 (Cryostat) – Flat plate

- Mounting part of thermal insulation test specimen : Atmospheric to 10-5 torr pressure environment implementation
- Measuring and analyzing thermal insulation performance at wider temperature range (4K to 293K) than existing temperature (78K to 293K) in NASA Data
- Calculate effective thermal conductivity  $(k_e)$  by measuring heat flux (Q) according to temperature gradient through cold and hot plates

# **TEST APPARATUS**





- Dimension of specimen : diameter (280 mm~ 300mm) / thickness (max. 100mm)
- Applied filling material: MLI (RUAG 社, Polyester foil) / Glass Bubble(3M 社, K1) /  $\checkmark$ Aerogel Mat
- In case of glass bubble powder, sample container is prepared for specimen mounting

#### MLI & Aerogel Mat



MLI

Aerogel Mat Heat fulx sensor





Glass Bubble





**Glass bubble** 

Filter



Sample container with glass bubble





# **TEST APPARATUS**





#### **TEST RESULT**



- Vacuum deterioration due to lowering molecular motion of the remaining air inside when LN2 is injected
- Through vacuum pumps and oil diffusion pumps, implement various
  Cold Vacuum Pressures (CVPs)
- ✓ In the condition of CVP, measure heat flow rate Q and calculate  $k_{eff}$  for applied filling materials





- Vacuum deterioration due to lowering molecular motion of the remaining air inside when LN2 is injected
- Through vacuum pumps and oil diffusion pumps, implement various
  Cold Vacuum Pressures (CVPs)
- ✓ In the condition of CVP, measure heat flow rate Q(=heat leakage) and calculate  $k_{eff}$  for applied filling materials









- ✓ Verification of comparison with previous research NASA data through only vacuum results
- ✓ Additional verification for MLI, Powder, Mat Type specimen







#### Conclusion

- ✓ In this study, a cryogenic effective thermal conductivity evaluation facility was designed for the liquid hydrogen storage.
- To validate the data of the evaluation facility, the effective thermal conductivity was measured and verified for various filling materials in an environment similar to that of liquid nitrogen in a similar existing facility.

#### **Future work**

- Conduct evaluation of effective thermal conductivity for the complex composite insulation system.
- ✓ Acquire effective thermal conductivity data below 77K. (Liquid helium at 4K)
- ✓ Validate the existing predictive model for effective thermal conductivity.



### Thank you for your attention