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Scaling up quantum computing

IBM quantum computer, 
https://spectrum.ieee.org/ibm-condor

• Current quantum computers: 100’s of qubits.

• Many qubit technologies, all require microwave 
signals to condition, initialize, and read out the 
qubits

• NIST: developing new microwave measurements 
at cryogenic (mK) temperatures, to enable 102

→

106 qubits to run in a dilution refrigerator

• RF MEMS switch is a critical component for NIST’s 
cryogenic microwave measurement strategy.
• Novel (this work): reliability data of electrostatic and/or 

commercial MEMS at various cryogenic temperatures

CEC 2023
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• Low insertion loss

• High isolation

• High linearity

• Very low power consumption

• Fast switching speed

• Small size
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Commercial RF MEMS switch

Cross section schematic from 
manufacturer’s data sheet
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DC contact MEMS switch operation

drive electrode

2 um thick metal 
cantilever

Switch is OFF – signal is isolated

signal

CPW 
signal

CPW ground

Switch is ON – signal passes 
through the signal line

Typical switch material: Au, 2 um thick
Typical substrate: Si, Al2O3,
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Reliability Issues for MEMS switches at cryo temperatures

• CTE mismatches → residual stresses, change in the operating characteristics 
or mechanical damage/failure 

• Thermal cycling →mechanical failures

• Material properties’ temperature dependence (resistivity, stiffness, strain 
hardening)

• Plastic deformation and creep 

• Contact wear degradation (DC contact switches), adhesion failures

• Dielectric charging stiction (capacitive shunt switches)

• The above can lead to varying switch characteristics over time. 

• Design tradeoffs e.g. switching speed vs actuation voltage
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Objectives

• Commercial MEMS switches are designed for room temperature operation

→ Goal: evaluate the reliability of commercial MEMS switches at cryogenic 
temperatures; provide guidance on switch lifetime and damage mitigation 
strategies

• Devices are sealed in a package (“black box”), microscopy not feasible

→ Objectives:
1. Develop electrical test protocols that are indicative of MEMS structural reliability
2. Develop test apparatus for various low temperatures
3. Investigate MEMS reliability from room temperature to 4 K: Preliminary data
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Cryostat Test Setup • Cryostat
• Mount for MEMS
• Temperature control + measurement
• High-voltage electronics for driving MEMS
• Data acquisition

T2

T1

Tlow ~ 15 K

Tlow ~ 60K

2nd stage

1st stage

GM cryocooler

Tswitch
60K - 300K

switch
driver

10-5 Torr
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Cryostat Test Setup  cont’d

Chip temp, y = 0.8265x + 47.779
R² = 0.998
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Mounting of the MEMS board/chip: 
• maximize thermal conduction with electrical isolation
• Temperature measurement at various locations

• Note: previous literature on cryogenic MEMS: convention was to 
assume cryostat temperature = MEMS temperature
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Test protocol 1: Hot-switching, hysterises
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• Electrostatically-actuated MEMS cantilever beams 
have hysterises

• Customers don’t need to worry about hysteresis as 
they operate between 0V and full-pull-down. 

• Hot-switching hysteresis test:
• 1 Vdc test signal
• Sweep the MEMS drive voltage up and down
• Measure the switch’s output test signal (0 or 1 

Vdc)
• Note the MEMS drive voltage where the switch 

turns on/off
• Does not give much information about the 

MEMS mechanical behavior.
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Test protocol 2: Cold-switching, hysterises
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Cold Hysterisis Test, room temp (start of this test series)

Test 1 (inc) Test 1 (decr)

Test 2 (Incr) Test 2 (decr)

Test 3 (incr) Test 3 (decr)

Test 4 (incr) Test 4 (decr)

Test 5 (incr) Test 5 (decr)(a) Partial pull-down

(b)Full pull-down

(c) Partial pull-up

(d) Full pull-up

• We define the width of the curve: 
= [Vpartial-pull-in] – [Vfull-pull-up] 

• Customers don’t need to worry 
about hysteresis as they operate 
between 0V and full-pull-down. 

width

Note: pulled-up resistance is actually infinite
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Test protocol 3: “Creep”
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• Cold-switching test
• Turn on the switch, keep it on, measure the change 

in contact resistance over time. Repeat.

• Contact resistance decreases rapidly within 1 minute. Then 
gradually over the next hour. 

• If the switch is then turned off and the test repeated, the new 
starting resistance is lower.

• If the switch is turned off and kept off. The next time it is turned 
on, the contact resistance is higher again. 

• Consistent with the literature on MEMS switches.
• Note: even the highest contact resistance is still relatively low (less 

than 2 ohms).

Observations: 
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Cryogenic Test Results: hot hysteresis  

• Within each temperature there are 3 data points (3 
replicate tests). 

• Curve width decreases by ~30% between room temp 
and 250 K, then continues the trend but at slower 
rate

• Curve is very similar to the “cold hysteresis width vs 
temp” curve (repeatable performance)

• Post-cooling, the room-temp width has decreased. 
This is similar to the cold-hysteresis curves

Direction of temperature
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Cryogenic Test Results: cold hysteresis 

• Within each temperature there are 3 data 
points (3 replicate tests). 

• Curve width decreases by ~30% between 
room temp and 250 K, then continues the 
trend but at slower rate

• Post-cooling, the room-temp width (similar 
to the hot-switching hysteresis curves)→
permanent change

Direction of temperature
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Cryogenic Test Results: Cold hysteresis contact resistances

• Each data point is an average of 3 tests. 
• Error bars are standard deviations
• 150 K appears to be a point of instability
• Post-cool room-temp resistance returns to 

pre-cool values

Direction of temperature
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New slide: Constant pull-down voltage with 
decreasing temps; different from literature
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• Whereas the literature shows increase in 
actuation voltage of up to 100% at cryo temps, 
we observe a decrease of < 5%

• Therefore, it can be said that the Menlo switch 
shows “practically no change” in actuation 
voltage with decreasing temp, which is a plus 
for a commercial device and is different from 
literature
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Cryogenic Test Results: creep

• Error bars are standard deviations
• Again, 150 K appears to be a point of 

instability

• The shape of the curve is similar to that for 
the cold-switching hysteresis tests, with 150 K 
being a point of instability

• Post-cooling room-temperature resistances 
are very close to that of the pre-cooling 
values (no permanent change)

Direction of temperature
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Summary
• Goal: evaluate mechanical reliability of commercial MEMS switches at cryogenic temperatures, for 

applications in quantum computing 

• Developed reliability test protocols and cryogenic test apparatus

• First investigation of electrostatic and/or commercial MEMS hysteresis as function of cryo temps

• MEMS pull-down voltage ~constant down to 55 K. Opposite of literature (which shows 2X increase)

• Hysteresis curves show decrease in width with decreasing temperature 
• Most significant (~ 30 %) change is from room temp to 250 K 
• Contact resistances (cold-switching) change with decreasing temp

• Creep test
• Contact resistances decrease over time within a single test (consistent with literature)
• Contact resistances change with decreasing temperature

• 150 K : point of instability for hysteresis and creep tests

• Permanent change in room-temperature drive voltages and hysteresis curve widths after cooling.

• Future work: 
• Switch-response time measurements
• Test to lower temperatures 
• Reverse the direction of the temperature change
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