

scl: cen

Belgian Nuclear Research Centre

Status of the MINERVA cryomodules and associated cryogenic system (MYRRHA Phase 1)

D Berkowitz Zamora¹, G Bonthuys¹, V Dekhtiarov¹, U Dorda¹, F Marhauser¹, F Michel², F Bonne², J-M Poncet², F Millet², H Saugnac³, Ch Joly³; G Olivier³, C Lhomme^{3,4}, T Junquera⁴; F Dieudegard⁴; M-E A Beniken⁴; Y Tijani⁴, J-P Thermeau⁵

¹ Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
 ² Univ. Grenoble Alpes, CEA IRIG-DSBT, Grenoble, France
 ³ Univ. Paris-Saclay, CNRS/IN2P3, IJCLab Orsay, France
 ⁴ Accelerator and Cryogenic Systems, ACS, Orsay, France
 ⁵ APC CNRS/IN2P3-Université Paris-Cité, France

11 JUL 2023

MINERVA, the 1st phase of MYRRHA

MYRRHA (fully implemented)

MYRRHA, a Multipurpose hYbrid Research Reactor for High-tech Applications

- MYRRHA is an **A**ccelerator **D**riven **S**ystem (ADS)
 - A full ADS demo facility at pre-industrial scale, where a "subcritical" reactor core is coupled to a proton accelerator.
 - The particle beam is needed to sustain the nuclear reaction.

Why MYRRHA?

Nuclear waste treatment

- Allow for **Partitioning & Transmutation** of nuclear waste in order to reduce its radio-toxicity.
- Reduction of 100x in volume and 1000x in duration.

MINERVA, the 1st phase of MYRRHA

MYRRHA (fully implemented)

MINERVA (MYRRHA Phase 1)

MINERVA, reliability is a core requirement

- Beam trips...
 - ... cause severe thermal stress on the reactor materials/components limiting its lifetime.
 - ... lead to a time-consuming restart of the reactor limiting its availability.
- Reliability requirement ٠
 - Beam trips shall be resolved within 3 seconds to be transparent to the reactor
 - Max 10 beam trips > 3s within 90 day operational run (MTBF > 250 h)

Specifications of the SRF LINAC

Parameter	Symbol Value	
Beam-energy range (low-beta)	E _{beam}	16.6 MeV to 100 MeV
SRF cavities (single spoke, niobium)	-	60 units (2 per cryomodule)
Duty factor, and frequency	-	CW; 352.2 MHz
Operating temperature	T _{cav}	2 K
Acceleration gradient (max. nominal peak)	E _{acc}	7 MV/m 9.1 MV/m
Cavity unloaded quality factor (2 K)	Q0	> 5.2 x10^9 at 9.1 MV/m
Dissipated power in cavity walls (2 K)	P _{cav}	4.25 W at $E_{acc} = 7 \text{ MV/m}$

Cryogenic Cells (QCELL = QM + QVB) along the LINAC

All QCELLs are identical, and are the only cryogenic "users"

Building layout

Berkowitz Zamora et al., Status of the MINERVA cryomodules and associated cryogenic system (MYRRHA Phase 1), CEC-ICMC 2023, Honolulu

Cooling circuits and heat loads

Required cooling capacity (static | dynamic | total), excluding contingency margins.

	Equipment	2 K Circuit [W]	TS Circuit [W]	Coupler Circuit [g/s]
	Single QCELL	13.9 9.1ª 23.0	184 - 184	0.040 0.012 0.052
	- QM only	9.3 9.1ª 18.4	122 - 122	0.040 0.012 0.052
Margins for cryoplant sizing	SRF linac			
- No margin	- Min turndown ^b	334 - 334	4423 - 4423	0.96 - 0.96
- Full margin +50%	- Nominal operation	418 187 605	5529 - 5529	1.20 0.36 1.56
- Limited margin +20%	- Max. operation	418 242 660	5529 - 5529	1.20 0.16 1.49

 $^{\rm a}~$ 4.25 W of RF losses per cavity at 7 MV/m.

^b hypothetical staged installation of 24 QCELLs.

Berkowitz Zamora et al., Status of the MINERVA cryomodules and associated cryogenic system (MYRRHA Phase 1), CEC-ICMC 2023, Honolulu

MINERVA Cryoplant

Cryoplant Architecture

- The preliminary design of the MINERVA Cryoplant has been developed.
 - Input from two industrial pre-studies were used to consolidate the study.
 - Updated heat load values has been implemented in the ongoing conceptual design.
 - ~ 3.5 kW @4.5 K, of which ~ 900 W @2 K (70% of total heat loads) ~ 700 kg of Helium inventory

Prototype assembly and testing

CAV2 CAV1 Internal support table

Prototype cryomodule for MINERVA

Cryomodule fully assembled in 2022

SCK CEN/56101846

sck cen

Valuable return of experience (assembly sequence, etc...) •

Test campaign at IJCLab

Test campaign 2023

- Without RF: Done. Data under analysis
- With RF: Ongoing

Design consolidation towards series production

- Design consolidation is ongoing for the remaining cryomodule components
 - RF power coupler •
 - Cold tuning system •
 - Cryostat •
- The mechanical design of the valve box is ongoing
- Example of current activities
 - Implementation of latest return of experience •
 - Cross-checking design and performance requirements •
 - Update of 3D models and integration check ٠
 - Preparation of tender documentation
- All components will be tendered based on detailed 3D • models. The manufacturing drawings are to be prepared by the supplier.

Components under design consolidation in view of call for tender

Cold tuning system

Ongoing series production

Spoke cavities

- SC spoke cavities adjudicated to Research Instruments (GER)
- First pre-series cavity completed!
 - 2nd and 3rd caviteis are ongoing
- Post-processing steps achieved successfully
 - BCP (rotary plant)
 - High-pressure rinsing
 - High-temperature heat treatment

First pre-series cavity

Internal spoke contour

Cavity

inside

helium tank

Magnetic shield

- Magnetic shields adjudicated to MECA Magnetic (FR)
- Series production started (kick-off Jan-2023)

TECA TAGNETIC magnetic shielding
--

Conclusion

MINERVA Cryogenic System

We have revised and updated the overall cryogenic system

- ✓ Cryogenic architecture has been defined
- ✓ System layout is now mature
- Building arrangement is consolidated
- ✓ Cooling requirements (SRF linac) are provided

Cryoplant requirements

- Total heat loads ~ 3.5 kW @4.5 K, of which
 ~ 900 W @2 K (70% of total heat loads)
- Helium inventory ~ 700 kg of Helium

Ongoing prototyping tests campaigns

- Plenty of insights on assemblability, operability, and opportunity for design iterations
- Return of experience already feeding the design consolidation of the series cryomodule

Design changes

- Various changes implemented, with a few still underway.
- Goal is to optimize heat loads, performance, and serialization efforts. Focus is on reliability!
- Continuously balancing between performance, cost, and schedule

Main cryo activities in the short term

- Finalize prototype tests for cryogenics and RF systems
- **Design consolidation** in view of **call for tender** for the remaining components
- **Continue series production** of cavities and magnetic shields
- **Tender out for** Cryoplant + Distribution

Copyright © SCK CEN - 2023

All property rights and copyright are reserved.

This presentation contains data, information and formats for dedicated use only and may not be communicated, copied, reproduced, distributed or cited without the explicit written permission of SCK CEN.

If this explicit written permission has been obtained, please reference the author, followed by 'by courtesy of SCK CEN'.

Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK CEN

Belgian Nuclear Research Centre Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire

> Foundation of Public Utility Stichting van Openbaar Nut Fondation d'Utilité Publique

Registered Office: Avenue Herrmann-Debrouxlaan 40 - 1160 BRUSSELS - Belgium

Research Centres: Boeretang 200 - 2400 MOL - Belgium Chemin du Cyclotron 6 - 1348 Ottignies-Louvain-la-Neuve - Belgium

