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INTRODUCTION

e NASA has been studying Lunar and Martian surface propellant production for
approximately 30 years.
e Greater than 55% of any Lunar or Martian return vehicle is oxygen by mass.

— Production on the surface decreases lander mass which decreases launch vehicle mass.

e Oxygen production on Mars was demonstrated by Mars Oxygen ISRU Experiment (MOXIE)
as a part of the Perseverance rover at rates between 1.5 and 11.2 mg/s.

— Done on stationairy portion of the rover using carbon dioxide gas from the atmosphere.
— Lunar production done either through mining water ice or reforming oxides within regolith.
e Last step of propellant production is the liquefaction process.

— Initially done within lander tanks, simply refueling them.

e NASA created Cryogenic Fluid In-situ Liquefaction for Landers (CryoFILL) project to
demonstrate liguefaction processes.



NASA GRC SMIRF Facility with Prototype Test Article in Vacuum Chamber.
Industrial cryocooler coldbox in the foreground.
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CryoFILL will demonstrate cryogenic capabilities on the Lunar and Martian
surfaces for landers, In-Situ Resource Utilization (ISRU), and the integration of
the two at a relevant scale, in a relevant environment with hardware that can
be used in ISRU End to End tests.

* Human Lander System (HLS) Sustainable Lunar Architecture
* In-Situ Resource Utilization (ISRU)
Obijectives

* Design, build, and test a Prototypical lander tank with a liquefaction system capable of
incorporating prototype flight components as they are developed.

* Demonstrate liquefaction processes in a relevant environment.

. — . . . Prototype Tank Thermal Desktop Model CryoFILL Tank Uninsulated
* Provide data for validation of two-phase cryogenic fluid models in development. P P yon a Support Stand

Current Status

* Oxygen liguefaction demonstration complete on Prototype tank

; i Oxygen Tank
* Half scale liquefaction rate (1.1 kg/hr +) demonstrated on half scale
(by surface area) tank
* Incorporated Fiber Optic Sensing System (FOSS) for better understanding of
ullage stratification (Chan - C30r3C-02) Ne Elow
* Final report to be published as NASA Technical Publication, draft completed Supply
Ne BAC Tube
* Modelling of test data in progress (Kashani — C30r2A-02)
Ne FI
* Block 2 testing (with flight-like 90 K cryocooler) slipped to FY24 due to funding set:rvr\:
constraints Cryocooler

Circulator




CRYOFILL LIBUEFACTION TEST PROGRESSION

Completed 2019 Testing Just Completed!!! Planned starting 2025
Brassboard: Prototype Block 1: Prototype Block 2:
* Liquid nitrogen * Liquid oxygen * Liquid oxygen
e Uses as much existing New tank/ hardware * Block 1 hardware
hardware as possible Thermal vacuum * Thermal vacuum

e Tank

. Other hardware Industrial cryocooler * Incorporate prototype

flight cryocooler (150 W
at 90 K)

: Changes between nitrogen * Aspects Of infusion
* Focused on operational and oxygen customer’s Concept of

variations Operations

Focused on operational
variations

* VVacuum

* Industrial cryocooler

 Verify operability for ISRU




PROTOTYPE TEST SCHEMATIC fest setup using industra

- - - integrated cryocooler system
| ) " Gaseous Oxygen * Plan to incorporate flight-
P o - raller like cryocooler system in

future.

For transient operations,
varied neon heater power,
oxygen flow rate, and
thermal vacuum
environment.
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PROTOTYPE BLOCK 1 TEST OVERVIEW

* Nitrogen checkout testing completed
* Grotenrath - C40r1B-06

 Three Phases of oxygen testing:

1. Evaluation of Nominal Performance Determination

2. Constant Liquefaction Operations

3. Transient Liquefaction Operations
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Confirming understanding of effects of the
knobs controlling the system operations.

Verifying steady-state system performance.
Exploring transient operations that may be

needed within a complex system.
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Constant liquefaction with pressure
set to 30 psia
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TYPICAL TRANSIENT OPERATIONS
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HIGH FILL MASS FLOW TRANSIENTS (PHASE 3) -
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CRYOGOOLER POWER TRANSIENTS (PHASE 3)
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ENVIRONMENTAL TEMPERATURE TRANSIENTS (PHASE 3)
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LONCLUSIONS

* Transients due to GOX Mass Flow Rate and Cryocooler Heat Removal were significantly more
impactful than transients due to Environmental Temperature (factor of 4 lower pressurization rates).

* Used steady-state results to predict transient pressurization rates within 10%.

* Fill level not important in predicting liquefaction rates:
* Changed pressurization rates slightly in transient tests.
* Pressurization rate very similar, depressurization rate increase by factor of 4 at high fill level.

* At high fill levels, the pressurization rate was about 10x higher through ullage insertion than dip tube
insertion.

* Dip tube could be preferable during operational transient activities to decrease the pressurization rates, especially at
higher fill levels.
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