

Thomas Just, Julian Will, Christoph Haberstroh

Faculty of Mechanical Science and Engineering // Institute of Power Engineering Bitzer-Chair of Refrigeration, Cryogenics and Compressor Technology

Hydrogen Permeability Testing of Fibre Reinforced Thermoplastics under Cryogenic Conditions – Validation of a Test Rig Concept

2023 Cryogenic Engineering Conference Honolulu, 12. July 2023

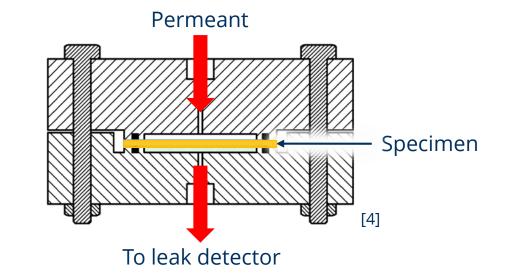
Fibre Reinforced Thermoplastics (FRT) as Construction Materials in Cryogenic Engineering

- LH₂ as sustainable fuel for certain mobile applications
 - Cryogenic LH₂ on-board systems
- Stainless steel as conventional construction material
 - Increasing need for lightweight engineering
 - > FRT as alternative construction materials

[1]

High vacuum insulation required

- Hydrogen permeation through FRT as challenge
- > Qualification of H₂/FRT permeation necessary

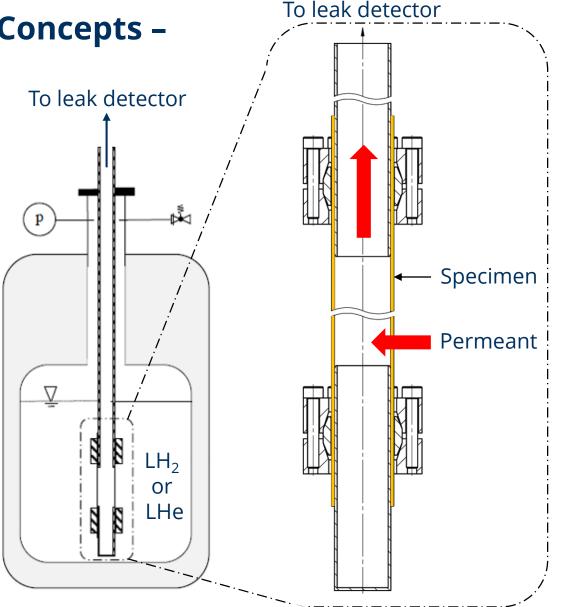


Comparison of Permeability Test Rig Concepts – Conventional Setup

- **Specimen:** Flat Disc
- Permeation Cell: Specimen disc fixed between two flanges
- High pressure chamber: Pressurised side of the cell
- Low pressure chamber: Evacuated side of the cell

Why is there a need for a novel test rig setup?

- Conventional setup is difficult to adapt to cryogenic conditions.
- > Specimens should be close to real FRT applications (e.g. fuel tanks, pipes)

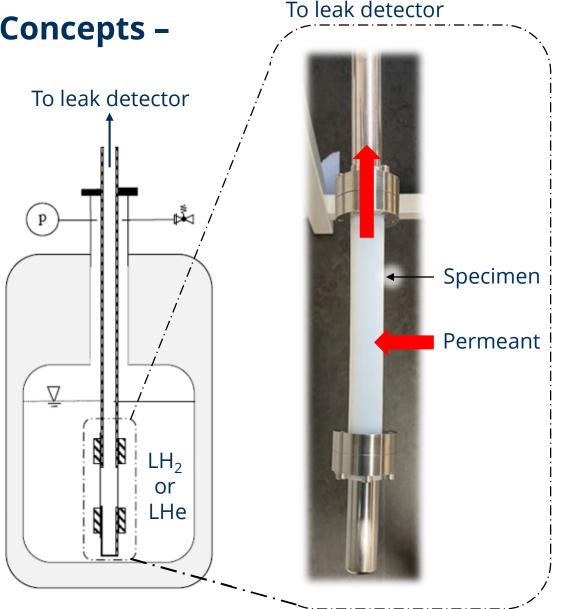


Comparison of Permeability Test Rig Concepts – Novel Setup

- **Specimen:** Cylindrical Pipe
- Permeation Cell: Specimen pipe connected to two impermeable metallic pipe segments
- High pressure chamber: Encasement around cell
- Low pressure chamber: Inside of specimen pipe

Advantages

- Measurement of curved structures is possible.
- > Permeable surface area can be adjusted by pipe length.



Comparison of Permeability Test Rig Concepts – Novel Setup

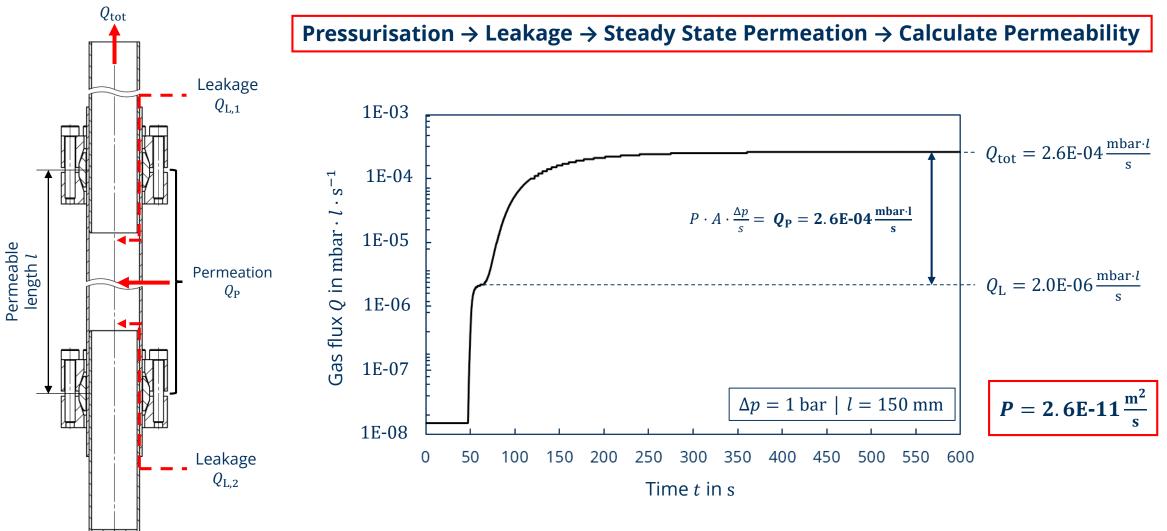
- **Specimen:** Cylindrical Pipe
- Permeation Cell: Specimen pipe connected to two impermeable metallic pipe segments
- High pressure chamber: Encasement around cell
- Low pressure chamber: Inside of specimen pipe

Advantages

- Measurement of curved structures is possible.
- > Permeable surface area can be adjusted by pipe length.

Validation Experiments – Substitutions

- He-4 as permeant instead of H₂
 - Simple experiments without huge safety precautions
 - > Results are comparable as substances are similar in size
- PTFE as subsitute polymer instead of FRT
 - > Literature data on He permeation through PTFE is abundant
 - Little data available on specific FRT
- First validation at room temperature
 - > Little data available at cryogenic temperature
- Experiments at cryogenic temperature
 - Still ongoing



Validation Experiments – Measuring He/PTFE Permeability

To leak detector

Validation Experiments – Results and Conclusion

Nr.	<i>Т</i> (°С)	<i>l</i> (mm)		$Q_{tot}/10^{-4}$ (mbar $\cdot \mathbf{l} \cdot \mathbf{s}^{-1}$)			
1	28.3	100	2.1	4.4	1.0	4.3	3.1
2	26.0	100	1.9	3.8	1.6	3.6	2.9
3	28.9	100	2.1	4.3	0.6	4.2	3.0
4	22.0	150	1.0	2.6	0.2	2.6	2.6
5	28.6	150	2.1	8.2	0.3	8.2	3.9
							Ø 3.1

- PTFE with wide variation in material properties.
- Literature reports values of *P* between 10^{-10} and 10^{-11} m² · s⁻¹ [5,6].

> Proposed test rig is validated at room temperature for homogeneous thermoplastics.

Thank you for your attention.

References

- [1] Daimler Truck 2023 Entwicklungsmeilenstein erreicht: Daimler Truck testet Brennstoffzellen-Lkw mit Flüssigwasserstoff https://media.daimlertruck.com/marsMediaSite/de/instance/ko/ Entwicklungsmeilenstein-erreicht-DaimlerTruck-testet-Brennstoffzellen-Lkw-mit-Fluessigwasserstoff.xhtml?oid=51975637 (accessed on 02/07/2023)
- [2] Airbus 2023 ZEROe Towards the world's first hydrogen-powered commercial aircraft *https://www.airbus.com/en/innovation/low-carbon-aviation/hydrogen/zeroe* (accessed on 02/07/2023)
- [3] Hydrogen Energy Supply Chain Project 2023 The Suiso Frontier https://www.hydrogenenergysupplychain.com/supply-chain/the-suiso-frontier/ (accessed on 02/07/2023)
- [4] DIN EN ISO 11114-5:2022-05, Gasflaschen Verträglichkeit von Werkstoffen für Gasflaschen und Ventile mit den in Berührung kommenden Gasen – Teil 5: Prüfverfahren zur Bewertung der Kunststoffinnenbehälter (ISO 11114-5:2022)
- [5] Weston G F 1975 Materials for ultrahigh vacuum Vacuum 25 pp 469–84
- [6] AGC Inc. 2002 Physical properties of Fluon[®] unfilled and filled PTFE *Technical Service Note F12/13*

