# Real-space screening of bulk topology of high-quality two-dimensional insulators

#### Pallab Goswami Northwestern University

CEC/ICMC2023, Topological Materials for Electronics I Honolulu, July 10





MRSEC Materials Research Science and Engineering Center

#### **Graduate students**







#### Alexander Tyner

#### Yuxin Wang

#### Saptarshi Biswas

## Outline

- Can real-space topological response be used to scan and predict bulk topology of realistic models of quantum materials?
- Magnetic flux tube: spin-charge separation for 2D quantum spin Hall states with and without gapless edge states

• Flux tube-based screening of 2D materials database: large band gap topological insulators which are not predicted by symmetry indicators

• Summary

## **Relevant papers**

(1) A. Tyner et al., Topology of three-dimensional Dirac semimetals and generalized quantum spin Hall systems without gapless edge modes (arXiv:2012.12906) [Phys. Rev. Research **5**, L012019, (2023)]

(2) A. Tyner and P. Goswami, Spin-charge separation and quantum spin Hall effect of beta-bismuthine, arXiv:2209.13582 (to be published in Scientific Reports)

(3) A. Tyner and P. Goswami, Solitons and real-space screening of bulk topology of quantum materials, arXiv:2304.05424

## Altland-Zirnbauer classification scheme

Three global discrete symmetries:

(1) time reversal (T),
(2) charge conjugation (C)
(3) chiral or sublattice (S)

Spin-orbit coupled, non-magnetic, non-superconducting materials: class All

| $class \setminus \delta$ | Т | C | S | 0              | 1              | 2                | 3              | 4              | 5              | 6              | 7              |
|--------------------------|---|---|---|----------------|----------------|------------------|----------------|----------------|----------------|----------------|----------------|
| A                        | 0 | 0 | 0 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$     | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |
| AIII                     | 0 | 0 | 1 | 0              | $\mathbb{Z}$   | 0                | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| AI                       | + | 0 | 0 | $\mathbb{Z}$   | 0              | 0                | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
| BDI                      | + | + | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0                | 0              | 0              | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ |
| D                        | 0 | + | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$     | 0              | 0              | 0              | $2\mathbb{Z}$  | 0              |
| DIII                     |   | + | 1 | 0              | 7.0            | $\mathbb{Z}_{2}$ | 77.            | 0              | 0              | 0              | 27.            |
| AII                      | - | 0 | 0 | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$   | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              | 0              |
| UII                      | _ | _ | Т | U              |                | U                | ⊿2             | ℤ2             | Ш              | U              | U              |
| $\mathbf{C}$             | 0 | — | 0 | 0              | 0              | $2\mathbb{Z}$    | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |
| $\operatorname{CI}$      | + | — | 1 | 0              | 0              | 0                | $2\mathbb{Z}$  | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |

Chiu et al., RMP 88, 035005 (2016)

#### <u>Altland-Zirnbauer classification</u> scheme

Consideration of spatial discrete symmetries: new classes of topological crystalline insulators

Effects of space inversion symmetry:

(Lu and Lee, arXiv:1403.5558)

Non-trivial systems may not support gapless surface states

| AZ<br>Class | Symmetry<br>group                        | d = 1          | d = 2          | d = 3          | d = 4              | d = 5          | d = 6          | d = 7          | d = 8              | Ē |
|-------------|------------------------------------------|----------------|----------------|----------------|--------------------|----------------|----------------|----------------|--------------------|---|
| А           | U(1)                                     | Z              | $\mathbb{Z}^2$ | Z              | $\mathbb{Z}^2$     | Z              | $\mathbb{Z}^2$ | Z              | $\mathbb{Z}^2$     | ŀ |
| AIII        | $U(1)_{spin} \times Z_2^T$               | 0              | 0              | 0              | 0                  | 0              | 0              | 0              | 0                  |   |
| AI          | $U(1) \rtimes Z_2^T$ $(T^2 = +1)$        | Z              | Z              | Z              | $\mathbb{Z}^2$     | Z              | Z              | Z              | $\mathbb{Z}^2$     |   |
| BDI         | $Z_2^T$ $(T^2 = +1)$                     | $\mathbb{Z}_2$ | 0              | 0              | 0                  | 0              | 0              | $\mathbb{Z}_2$ | $(\mathbb{Z}_2)^2$ |   |
| D           | $Z_2^f = \mathrm{N}/\mathrm{A}$          | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0                  | 0              | $\mathbb{Z}$   | $\mathbb{Z}_2$ | $(\mathbb{Z}_2)^2$ |   |
| DIII        | $Z_2^T$ $(T^2 = -1)$                     | 0              | 0              | 0              | 0                  | 0              | 0              | 0              | 0                  |   |
| AII         | $U(1) \rtimes Z_2^T$ $(T^2 = -1)$        | Z              | Z              | Z              | $\mathbb{Z}^2$     | Z              | Z              | Z              | $\mathbb{Z}^2$     |   |
| CII         | $SU(2) \times Z_2^T$ $(T^2 = +1)$        | 0              | 0              | $\mathbb{Z}_2$ | $(\mathbb{Z}_2)^2$ | $\mathbb{Z}_2$ | 0              | 0              | 0                  |   |
| С           | $SU(2)_{spin}$                           | 0              | $\mathbb{Z}$   | $\mathbb{Z}_2$ | $(\mathbb{Z}_2)^2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0                  | Γ |
| CI          | $SU(2)_{spin} \times Z_2^T$ $(T^2 = -1)$ | 0              | 0              | 0              | 0                  | 0              | 0              | 0              | 0                  |   |

| -                                  |                 |               |                               |                   |                               |                   |
|------------------------------------|-----------------|---------------|-------------------------------|-------------------|-------------------------------|-------------------|
| -                                  |                 | TCI/TCS       | d=1                           | d=2               | d=3                           | d=4               |
| <b>Reflection/mirror symmetry</b>  | Reflection      | FS1 in mirror | p=8                           | p=1               | p=2                           | p=3               |
| _                                  |                 | FS2 in mirror | p=2                           | p=3               | p=4                           | p=5               |
| -                                  | R               | A             | $M\mathbb{Z}$                 | 0                 | $M\mathbb{Z}$                 | 0                 |
| Chiu et al., RMP 88, 035005 (2016) | $R_+$           | AIII          | 0                             | $M\mathbb{Z}$     | 0                             | $M\mathbb{Z}$     |
| · · · ·                            | $R_{-}$         | AIII          | $M\mathbb{Z}\oplus\mathbb{Z}$ | 0                 | $M\mathbb{Z}\oplus\mathbb{Z}$ | 0                 |
|                                    |                 | AI            | $M\mathbb{Z}$                 | 0                 | $0^a$                         | 0                 |
| protected, gapless surface         |                 | BDI           | $M\mathbb{Z}_2$               | $M\mathbb{Z}$     | 0                             | $0^a$             |
|                                    |                 | D             | $M\mathbb{Z}_2^a$             | $M\mathbb{Z}_2$   | $M\mathbb{Z}$                 | 0                 |
| states                             | $R_{+}, R_{++}$ | DIII          | 0                             | $M\mathbb{Z}_2^a$ | $M\mathbb{Z}_2$               | $M\mathbb{Z}$     |
|                                    |                 | AII           | $2M\mathbb{Z}^a$              | 0                 | $M\mathbb{Z}_2^a$             | $M\mathbb{Z}_2$   |
|                                    |                 | CII           | 0                             | $2M\mathbb{Z}^a$  | 0                             | $M\mathbb{Z}_2^a$ |
|                                    |                 | C             | $0^a$                         | 0                 | $2M\mathbb{Z}^a$              | 0                 |
| _                                  |                 | CI            | 0                             | $0^a$             | 0                             | $2M\mathbb{Z}^a$  |
|                                    |                 | AI            | $0^a$                         | 0                 | $2M\mathbb{Z}^a$              | 0                 |
|                                    |                 | BDI           | 0                             | $0^a$             | 0                             | $2M\mathbb{Z}^a$  |
|                                    |                 | D             | $M\mathbb{Z}$                 | 0                 | $0^a$                         | 0                 |
|                                    | $R_{-}, R_{}$   | DIII          | $\mathbb{Z}_2$                | $M\mathbb{Z}$     | 0                             | $0^a$             |
|                                    |                 | AII           | $T\mathbb{Z}_2^a$             | $\mathbb{Z}_2$    | $M\mathbb{Z}$                 | 0                 |
|                                    |                 | CII           | 0                             | $T\mathbb{Z}_2^a$ | $\mathbb{Z}_2$                | $M\mathbb{Z}$     |
|                                    |                 | С             | $2M\mathbb{Z}^a$              | 0                 | $T\mathbb{Z}_2^a$             | $\mathbb{Z}_2$    |
| -                                  |                 | CI            | 0                             | $2M\mathbb{Z}^a$  | 0                             | $T\mathbb{Z}_2^a$ |
|                                    |                 |               |                               |                   |                               |                   |

## High throughput screening of band topology

• realistic models of materials: symmetry-based indicators + Wilson loop spectrum

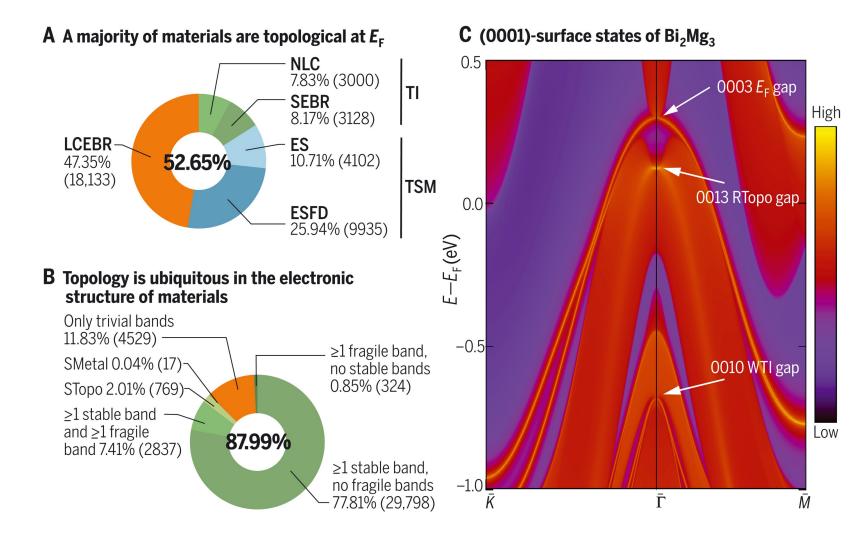
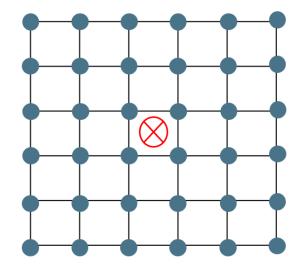
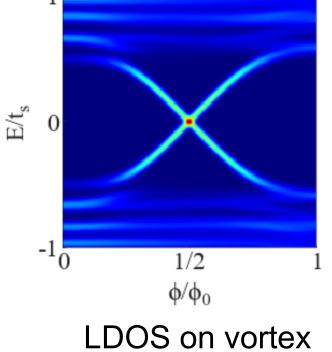
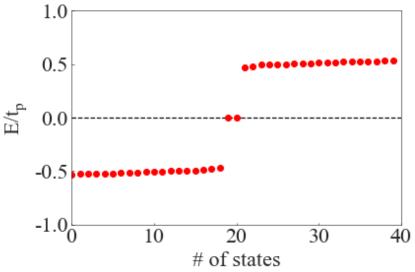



Fig. from: Vergniory et. al, Science, Vol 376, Issue 6595, (2022)

What are the physical significance of new invariants and phases?


How to detect topology beyond symmetry indicators?

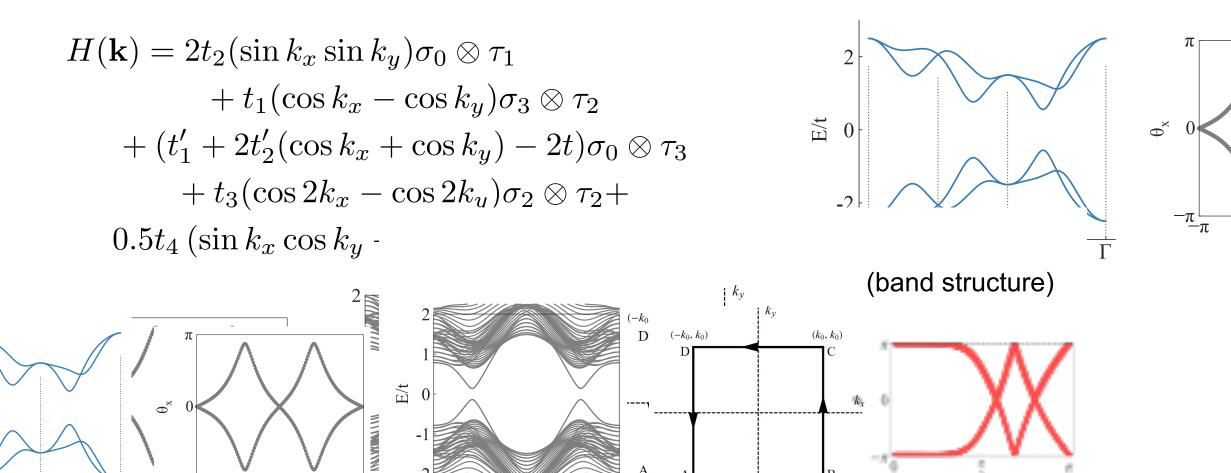

# Spin-charge separation for QSH state


$$H(\mathbf{k}) = t_p \sin k_x \Gamma_1 + t_p \sin k_y \Gamma_2 + t_s (\Delta - \cos k_x - \cos k_y) \Gamma_3$$

BHZ model: two copies of quantum Hall; cross-correlated charge and spin response

Magnetic pi-flux tube leads to spin-charge separation (Qi & Zhang, PRL 101, 086802 (2008); Ran et al, PRL 101, 086801 (2008) )








Kramers doublet for  $\pi$ -flux

for systems without gapless edge states:Tyner et. al, arXiv:2012.12906 (PRR)

## Spin-charge separation for even integer QSH state



 $(-k_0, -k_0)$ 

(b) Gapped Wannier<u>charge centers</u> gapped edge states

0

k<sub>v</sub>

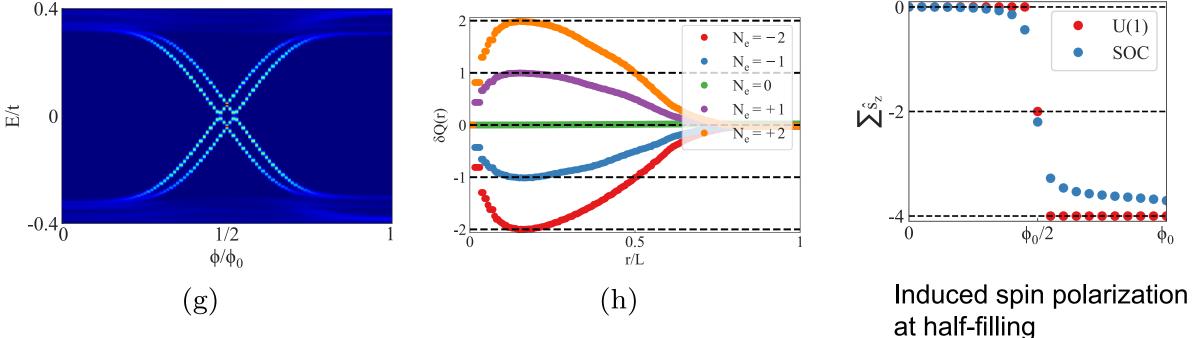
-π∟ \_π

Х

S

(winding of in plane Wilson loop spectrum)

 $\frac{1}{1} = \frac{1}{1} = \frac{1}$ 


 $(k_0, -k_0)$ 

4 mid-gap modes for pi flux tube: splitting of two doublets for BHZ type model with U(1) spin-rotation symmetry

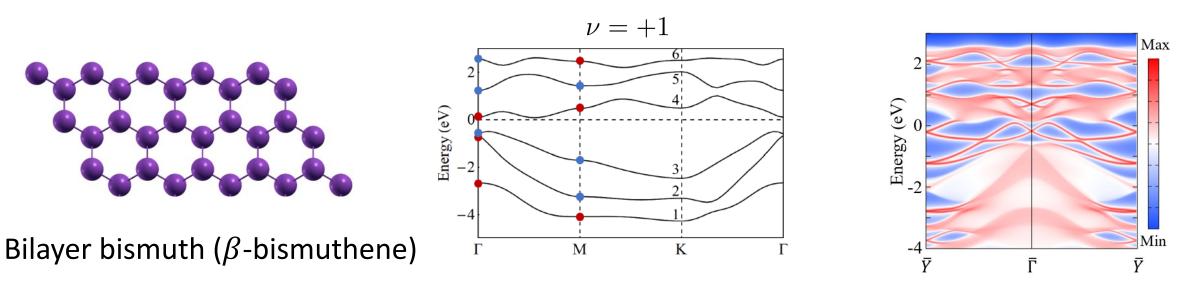
 $(-k_0, -k_0)$ 

Spin-charge separation for even integer QSH state

 $(k_0, -k_0)$ 



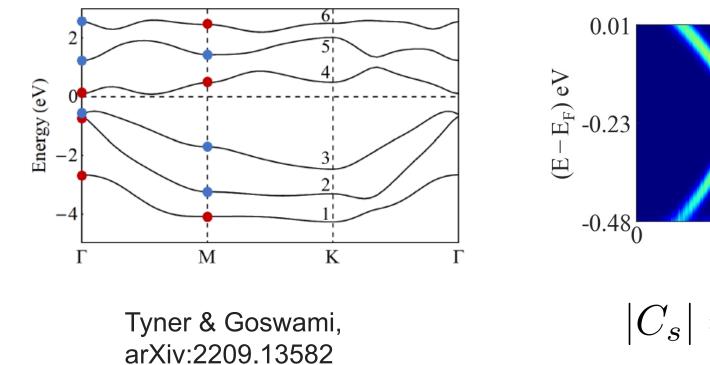
Spectrum for magnetic flux tube

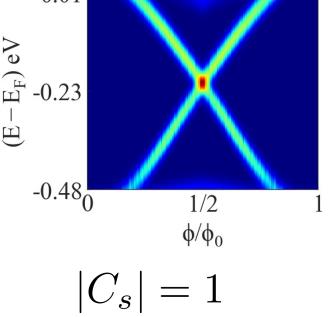

π

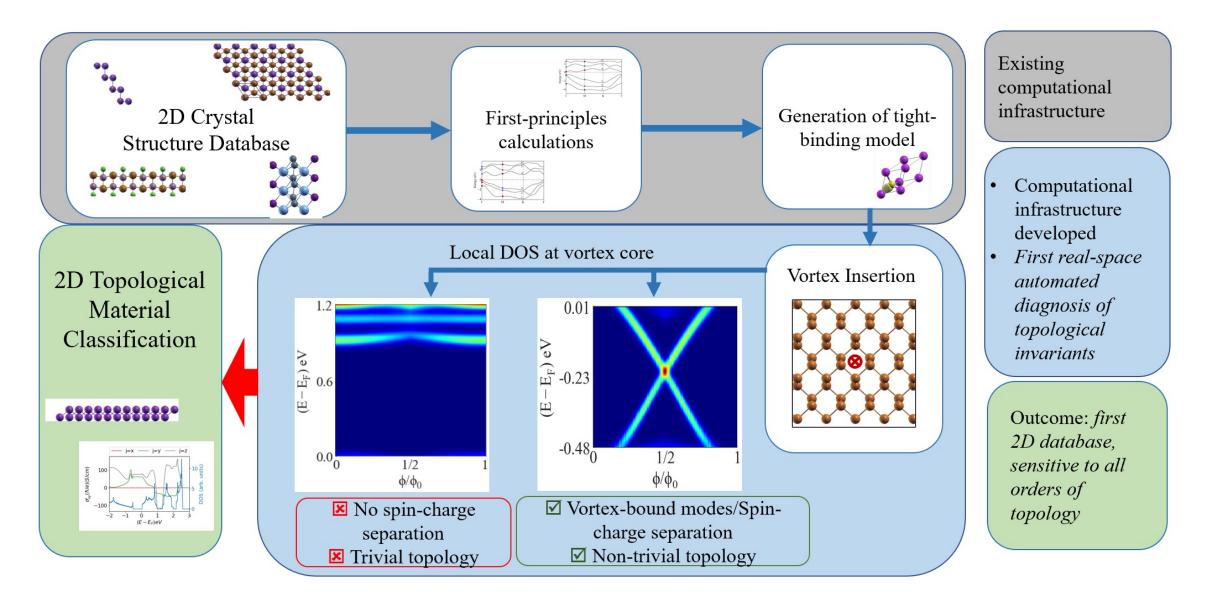
Induced electric charge away from half-filling

at half-filling

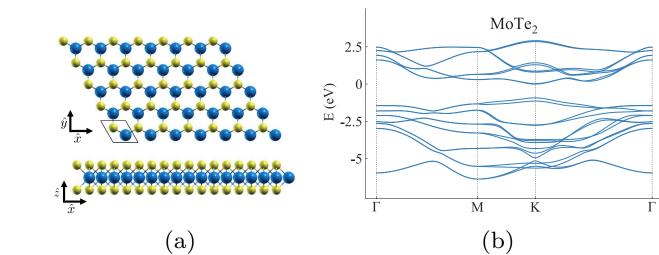
- Flux tube calculation for DFT derived models of bilayer bismuth ( $\beta$ -bismuthene)
- Classified as QSH insulator


Phys. Rev. Lett. 97, 236805, (2006) Phys. Rev. B. 83, 121310(R), (2011)



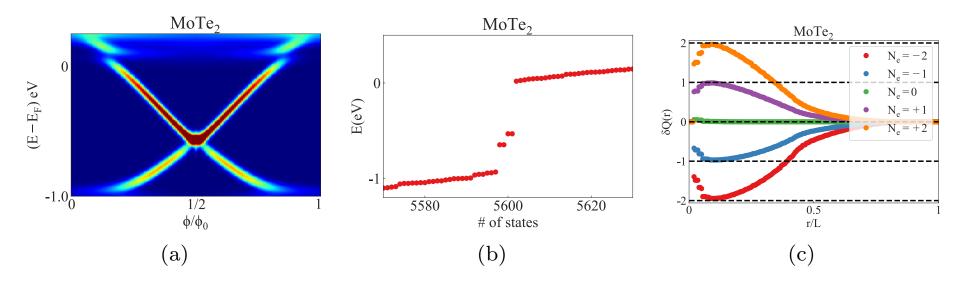


Tyner & Goswami, arXiv:2209.13582

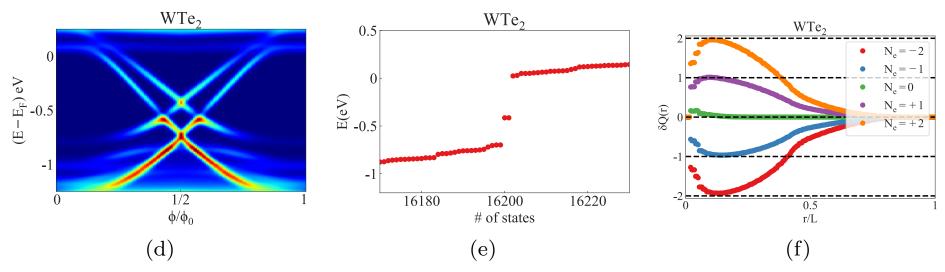
Spin Chern number  $C_s = \pm 1, \pm 3?$ 


• Developed software to perform vortex insertion for DFT derived models





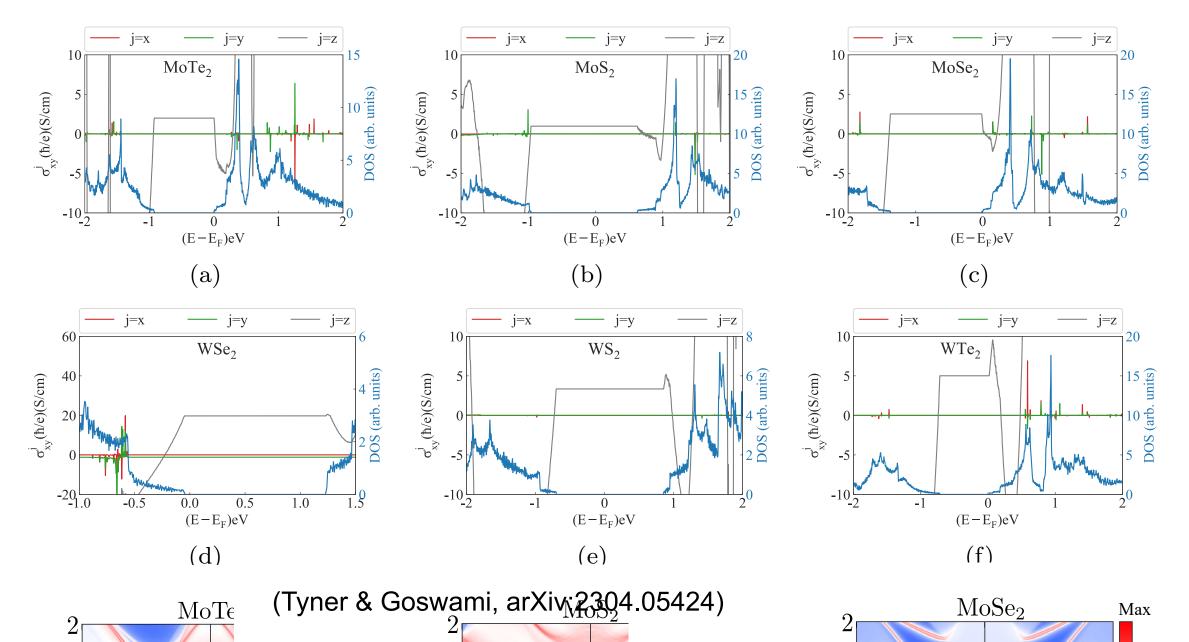


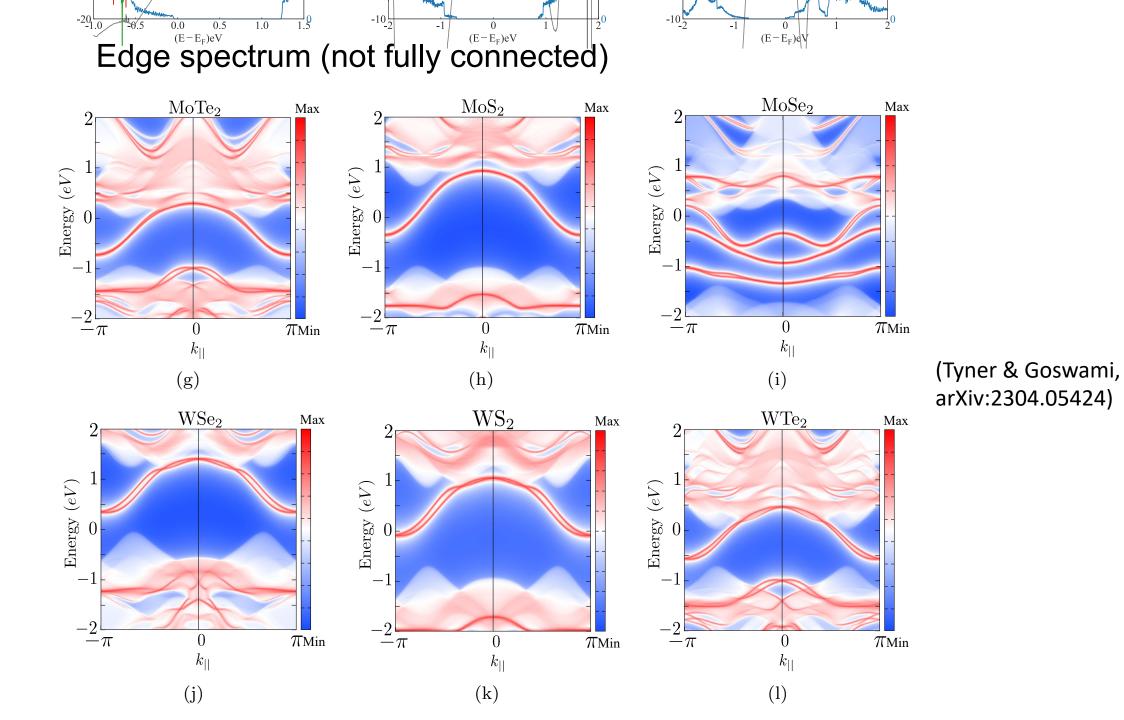


- Monolayer 1H TMDs
- Z<sub>2</sub>-trivial, large band gap, insulator



|                   | $\Delta E_{DFT}$ |  |  |  |  |
|-------------------|------------------|--|--|--|--|
| MoTe <sub>2</sub> | 1.1 eV           |  |  |  |  |
| $MoS_2$           | 1.6 eV           |  |  |  |  |
| $MoSe_2$          | 1.5 eV           |  |  |  |  |
| WSe <sub>2</sub>  | 1.6 eV           |  |  |  |  |
| $WS_2$            | 1.8 eV           |  |  |  |  |
| WTe <sub>2</sub>  | 1.1 eV           |  |  |  |  |
| (c)               |                  |  |  |  |  |

Probing with flux tube (Tyner & Goswami, arXiv:2304.05424)




| Formula | Spacegroup | Band gap (eV) | Z2 Index | Cs,G                                                                                        |
|---------|------------|---------------|----------|---------------------------------------------------------------------------------------------|
| Au2Br2  | Cmme       | 2             | 0        | 2                                                                                           |
| Bi2     | P-3m1      | 0.6           | 1        | 1                                                                                           |
| CdI2    | P-3m1      | 2.4           | 0        | 2                                                                                           |
| Cu2I2   | P-3m1      | 2             | 0        | 2                                                                                           |
| FeCl2   | P-3m1      | 0.9           | 0        | 2                                                                                           |
| GeI2    | P-3m1      | 2.1           | 0        | 2                                                                                           |
| GeI2    | P-6m2      | 2             | 0        | 2                                                                                           |
| MoS2    | P-6m2      | 1.6           | 0        | 2                                                                                           |
| MoSe2   | P-6m2      | 1.5           | 0        | 2                                                                                           |
| MoTe2   | P-6m2      | 1.1           | 0        | 2                                                                                           |
| NiO2    | P-3m1      | 1.3           | 0        | 2                                                                                           |
| PtO2    | P-3m1      | 1.7           | 0        | 2                                                                                           |
| PtS2    | P-3m1      | 1.8           | 0        | 2                                                                                           |
| PtSe2   | P-3m1      | 1.3           | 0        | 2                                                                                           |
| Sn2O2   | P4/nmm     | 3             | 0        | 2                                                                                           |
| Tl2S    | P-3m1      | 1.4           | 0        | 2                                                                                           |
| WS2     | P-6m2      | 1.8           | 0        | 2                                                                                           |
| WSe2    | P-6m2      | 1.6           | 0        | 2                                                                                           |
| WTe2    | P-6m2      | 1.1           | 0        | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| ZnCl2   | P-3m1      | 4.5           | 0        | 2                                                                                           |
| ZnCl2   | P-4m2      | 4.3           | 0        | 2                                                                                           |
| ZrCl2   | P-6m2      | 1             | 0        | 2                                                                                           |

higher-order, quantum spin Hall insulators with even integer spin Chern number

#### Calculation of spin Hall conductivity (WannierBeri)





#### **Summary**

- Magnetic-flux tube: non-perturbative probe to predict spin Chern number regardless of the presence of additional symmetries or gapless edge states
- Real-space probes are ideally suited for quasi-crystals, disordered, and correlated systems
- New experiments on 1H TMDs and closely related large band gap materials?

Thank you!