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Outline

● Can real-space topological response be used to scan and predict bulk 
   topology of realistic models of quantum materials?

● Magnetic flux tube: spin-charge separation for 2D quantum spin Hall states 
   with and without gapless edge states

● Flux tube-based screening of 2D materials database: large band gap 
topological insulators which are not predicted by symmetry indicators 

● Summary
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Altland-Zirnbauer classification scheme

Three global discrete
symmetries:

(1) time reversal (T), 
(2) charge conjugation (C)
(3) chiral or sublattice (S)

Spin-orbit coupled, 
non-magnetic,
non-superconducting
materials: class AII

Chiu et al., RMP 88, 035005 (2016)



Altland-Zirnbauer classification 
scheme

Consideration of spatial discrete 
symmetries: new classes of 
topological crystalline insulators

3

AZ

Class

Symmetry

group

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 Physical realizations

A U(1) Z Z2 Z Z2 Z Z2 Z Z2
Insulators (conserving charge),

Sz
-conserving magnetic superconductors.

AIII U(1)spin ⇥ ZT
2 0 0 0 0 0 0 0 0

TRI Sz
-conserving superconductors.

AI U(1)o ZT
2 Z Z Z Z2 Z Z Z Z2

Insulators with a combination of time reversal

and ⇡-spin-rotation,

Sz
-conserving superconductors with a

combination of time reversal and ⇡-spin-rotation

along Sx/y
.

(T 2 = +1)

BDI ZT
2 Z2 0 0 0 0 0 Z2 (Z2)

2
Superconductors with a combination of time

reversal and ⇡-spin-rotation.(T 2 = +1)

D Zf
2 =N/A Z2 Z 0 0 0 Z Z2 (Z2)

2

Superconductors with no symmetry.

DIII ZT
2 0 0 0 0 0 0 0 0

TRI superconductors.
(T 2 = �1)

AII U(1)o ZT
2 Z Z Z Z2 Z Z Z Z2

TRI insulators.
(T 2 = �1)

CII SU(2)⇥ ZT
2 0 0 Z2 (Z2)

2 Z2 0 0 0 Singlet superconductors with a combination of

time reversal and ⇡-pseudospin-rotation.(T 2 = +1)

C SU(2)spin 0 Z Z2 (Z2)
2 Z2 Z 0 0

Singlet superconductors.

CI SU(2)spin ⇥ ZT
2 0 0 0 0 0 0 0 0

TRI singlet superconductors.
(T 2 = �1)

Table I: Classification of gapped non-interacting fermion phases with various global symmetries
9,11

, in the presence of an

additional inversion symmetry I with I2 = 1. Note that inversion symmetry I commutes with all other global symmetries.

“TRI” is short for “time reversal invariant”. The classification repeats itself when spatial dimension increases by 8.

1. d = odd

In odd spatial dimensions, the matrix U becomes a
new generator in the complex Clifford algebra, since it
anti-commutes with all other generators. The associated
classifying space for mass matrix M is determined by the
new extension problem Cln+1 ! Cln+2, and it changes
from Cn to Cn+1 due to the extra inversion symmetry I.
Hence in odd spatial dimensions, distinct gapped phases
in class A form an integer group Z = ⇡0(C0 mod 2), and
a trivial group 0 = ⇡0(C1 mod 2) in class AIII.

2. d = even

In even spatial dimensions, matrix U serves as a new
symmetry which commutes with all generator of the orig-
inal Clifford algebra. Note that U

2 = �1 if d = 2
mod 4 and U

2 = +1 if d = 0 mod 4. We can choose
a basis where matrix U (or UQ) is block diagonalized,
so that U = �z ⌦ 1 in d = 0 mod 4 dimensions (or
UQ = �z ⌦ 1 in d = 2 mod 4 dimensions). Clearly no
mixing term between the U = +1 (or UQ = +1) and
U = �1 (or UQ = �1) subspace is allowed by inversion

symmetry I, and each subspace has the same classifi-
cation as in the standard 10-fold-way. Therefore when
d =even, distinct gapped fermion phases have a group
structure Z⇥Z in class A, and still a trivial group struc-
ture 0 = ⇡0(C1 mod 2) in class AIII, as summarized in
TABLE I.

B. Eight real classes

For the eight real classes in the 10-fold-way, the clas-
sifying space for mass matrix M in (1) is related to
the following extension problem of real Clifford algebra:
Clp,q ! Clp,q+1 generated by38

{�i, g↵} �! {�i, g↵,M}. (6)

Now with inversion symmetry I, the new matrix U satis-
fying (5) will change the structure of the original Clifford
algebra. From (4) we can see the classification of topolog-
ical insulators/superconductors with inversion symmetry
changes from the original 10-fold-way, depending on spa-
tial dimension modulo 4.

Effects of space inversion symmetry:

(Lu and Lee, arXiv:1403.5558) 

Non-trivial systems may not support
gapless surface states



Reflection/mirror symmetry

Chiu et al., RMP 88, 035005 (2016)

protected, gapless surface 
states



Fig. from: Vergniory et. al, Science, 
Vol 376, Issue 6595, (2022)

● realistic models of materials: symmetry-based indicators + Wilson loop spectrum

High throughput screening of band topology 

What are the physical significance 
of new invariants and phases?

How to detect topology beyond
symmetry indicators?



LDOS on vortex Kramers doublet for 𝜋-
flux

for systems without gapless 
edge states:Tyner et. al, 
arXiv:2012.12906 (PRR)

Spin-charge separation for QSH state

BHZ model: two copies of quantum Hall; cross-correlated charge and spin response

Magnetic pi-flux tube leads to spin-charge separation (Qi & Zhang, PRL 101, 086802 (2008); 
Ran et al, PRL 101, 086801 (2008) )
                                                                                                        



Spin-charge separation for even integer QSH state
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APPENDIX A: DETERMINATION OF
INVARIANT AND SPIN-PUMPING

In Tyner et. al[15], it was demonstrated that in a
two-dimensional insulator supporting a ground state
spin Chern number, Cs,G = +2, in the presence of
Kramers-degeneracy (PT -symmetry) and particle-
hole symmetry, a magnetic flux tube serves as a
spin-pump. At ⇡-flux there exists four, zero-energy
VBMs creating a ground-state degeneracy. Spin-
charge separation was then demonstrated through
direct calculation of induced charge at half-filling,
and upon doping Ne electrons where Ne 2 [�2, 2].
The results clearly show that the vortex acquired an
induced charge given by �Q = Ne ⇥ e, proving the
insulator is a platform for spin-charge separation.
In many T -invariant real materials, P, as well as
particle-hole symmetry, is not conserved. This is
true in the 1H-MX2 family of TMDs, where P-
symmetry is absent. In this case, the 2N VBMs for
a two-dimensional insulator supporting Cs,G = |N |
need not be degenerate at ⇡-flux, creating a gap in
the spectral-flow. To exemplify this situation, we
employ a four-band tight-binding model on a square
lattice, the Bloch Hamiltonian takes the form:

H(k) = 2t2(sin kx sin ky)�0 ⌦ ⌧1

+ t1(cos kx � cos ky)�3 ⌦ ⌧2

+ (t01 + 2t02(cos kx + cos ky)� 2t)�0 ⌦ ⌧3

+ t3(cos 2kx � cos 2ky)�2 ⌦ ⌧2+

0.5t4 (sin kx cos ky + sin ky cos kx)�1 ⌦ ⌧1

, (2)

where �0,1,2,3(⌧0,1,2,3) are the 2 ⇥ 2 identity matrix
and three Pauli matrices respectively, operating on
the spin (orbital) indices.
We select the hopping parameters, t1 = t4 = 1, t2 =
0.5, t01 = 2.5, t02 = 0.5, t3 = 1/5 and t = 1, with the
band structure shown in Fig. (4(a)). This model
preserves C4 rotational and time-reversal symme-
try while breaking inversion symmetry. The time-
reversal symmetry is explicitly implemented as, T =
i(�2⌦⌧0)K, where K indicates complex conjugation.
Furthermore, both the WCC spectra and surface
state spectra are gapped as seen in Fig. (4(b)) and
Fig. (4(c)) respectively.
We first establish the ground-states spin-Chern num-
ber in momentum space by performing an in-plane
Wilson loop for occupied valence bands along the
contour ABCD[14]. The area of the contour over
which the Wilson loop is calculated is systematically
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(e) (f) (g) (h)

FIG. 4: (a) Band structure along high-symmetry path for tight-binding model given by eq. (2). (b)
Wannier center charge spectra for occupied bands. The spectra is gapped, disallowing assignment of
non-trivial topology. (c) Spectra considering a slab of 40 unit cells along the x̂ direction and periodic

boundary conditions along ŷ. No determination about bulk topology can be made due to the absence of
gapless states. (d) Schematic of path for calculation of in-plane Wilson loop for determining magnitude of

ground-state spin-Chern number, |Cs,G| as a function of k0 : 0 ! ⇡. (e) In-plane loop Wannier center
charge (WCC) spectra for eq. (2). The spectra clearly demonstrates a double winding, corresponding to a
ground state bulk invariant, |Cs,G| = 2.(f) Wannier center charge spectra for spin-resolved Wilson loop

along x̂ axis as a function of transverse momenta, ky, displaying a double winding, indicating a spin Chern
number |Cs,G| = 2. (g) Local density of states on the flux tube as a function of the flux strength,

demonstrating the presence of vortex bound modes, but the absence of spectral-flow. (h) Induced charge as
a function of filling the VBMs seen in (g). The results demonstrate the robust nature of spin-charge

separation upon breaking the degeneracy of the mid-gap VBMs at ⇡-flux.

increased from zero to be equivalent with the area
of the first Brillouin zone. This is shown schemat-
ically in Fig. (4(d)). The in-plane Wilson loop is
calculated as,

Wn,j = Pexp


i

I
Aj,n(k)dkj

�
. (3)

Upon integration, we find Wn,j = exp (i✓nn̂ · �),
where ✓n is the non-Abelian flux. Wannier cen-
ter charges (WCCs), j̄, follow as eigenvalues of
Im(Ln(Wn,j)), therefore Wannier center charges are
equivalent to ±|✓|mod⇡. By plotting the winding
of WCCs we can identify the flux enclosed by the
contour as a function of the area enclosed. The re-
sults, shown in Fig. (4(e)), demonstrate that the
ground-state spin-Chern number, Cs,G = |2|.
We could have also computed the ground-state spin
Chern number following the procedure outlined by
Prodan[12]. This procedure requires defining the
projected spin operator (PSO), P (k)ŝP (k), where
P (k) is the projector onto occupied bands and ŝ

is a chosen spin-quantization axis. In the absence

of spin-orbit coupling the eigenvalues of the PSO
are fixed as ±1, however since we have introduced
spin-orbit coupling, the eigenvalues are no longer
pinned at ±1. Nevertheless, a gap in the eigenvalue
spectra remains for our given model when selecting
ŝ = sz = �3 ⌦ ⌧0, allowing for calculation of the
spin-Chern number via spin-resolved Wilson loop as
detailed in Lin et. al[25]. The results shown in Fig.
(4(f)), demonstrate the WCC spectra when perform-
ing the spin-resolved Wilson loop along the x̂ axis
as a function of transverse momenta ky for the band
corresponding to negative eigenvalues of the PSO,
✓
�
x . The conclusion is in alignment with the ear-
lier determination that the ground states supports
|Cs,G| = 2. We emphasize though, that this method
is extremely challenging to implement in DFT de-
rived models where detailed information regarding
our basis is not always easily accessible, particularly
in an automated workflow.

Having established the magnitude of the bulk invari-
ant, we turn to insertion of a magnetic flux tube.
The local density of states on the flux tube inserted
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FIG. 4: (a) Band structure along high-symmetry path for tight-binding model given by eq. (2). (b)
Wannier center charge spectra for occupied bands. The spectra is gapped, disallowing assignment of
non-trivial topology. (c) Spectra considering a slab of 40 unit cells along the x̂ direction and periodic

boundary conditions along ŷ. No determination about bulk topology can be made due to the absence of
gapless states. (d) Schematic of path for calculation of in-plane Wilson loop for determining magnitude of

ground-state spin-Chern number, |Cs,G| as a function of k0 : 0 ! ⇡. (e) In-plane loop Wannier center
charge (WCC) spectra for eq. (2). The spectra clearly demonstrates a double winding, corresponding to a
ground state bulk invariant, |Cs,G| = 2.(f) Wannier center charge spectra for spin-resolved Wilson loop

along x̂ axis as a function of transverse momenta, ky, displaying a double winding, indicating a spin Chern
number |Cs,G| = 2. (g) Local density of states on the flux tube as a function of the flux strength,

demonstrating the presence of vortex bound modes, but the absence of spectral-flow. (h) Induced charge as
a function of filling the VBMs seen in (g). The results demonstrate the robust nature of spin-charge

separation upon breaking the degeneracy of the mid-gap VBMs at ⇡-flux.

increased from zero to be equivalent with the area
of the first Brillouin zone. This is shown schemat-
ically in Fig. (4(d)). The in-plane Wilson loop is
calculated as,

Wn,j = Pexp


i

I
Aj,n(k)dkj

�
. (3)

Upon integration, we find Wn,j = exp (i✓nn̂ · �),
where ✓n is the non-Abelian flux. Wannier cen-
ter charges (WCCs), j̄, follow as eigenvalues of
Im(Ln(Wn,j)), therefore Wannier center charges are
equivalent to ±|✓|mod⇡. By plotting the winding
of WCCs we can identify the flux enclosed by the
contour as a function of the area enclosed. The re-
sults, shown in Fig. (4(e)), demonstrate that the
ground-state spin-Chern number, Cs,G = |2|.
We could have also computed the ground-state spin
Chern number following the procedure outlined by
Prodan[12]. This procedure requires defining the
projected spin operator (PSO), P (k)ŝP (k), where
P (k) is the projector onto occupied bands and ŝ

is a chosen spin-quantization axis. In the absence

of spin-orbit coupling the eigenvalues of the PSO
are fixed as ±1, however since we have introduced
spin-orbit coupling, the eigenvalues are no longer
pinned at ±1. Nevertheless, a gap in the eigenvalue
spectra remains for our given model when selecting
ŝ = sz = �3 ⌦ ⌧0, allowing for calculation of the
spin-Chern number via spin-resolved Wilson loop as
detailed in Lin et. al[25]. The results shown in Fig.
(4(f)), demonstrate the WCC spectra when perform-
ing the spin-resolved Wilson loop along the x̂ axis
as a function of transverse momenta ky for the band
corresponding to negative eigenvalues of the PSO,
✓
�
x . The conclusion is in alignment with the ear-
lier determination that the ground states supports
|Cs,G| = 2. We emphasize though, that this method
is extremely challenging to implement in DFT de-
rived models where detailed information regarding
our basis is not always easily accessible, particularly
in an automated workflow.

Having established the magnitude of the bulk invari-
ant, we turn to insertion of a magnetic flux tube.
The local density of states on the flux tube inserted

Gapped Wannier charge centers; 
gapped edge states

(band structure)
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FIG. 4: (a) Band structure along high-symmetry path for tight-binding model given by eq. (2). (b)
Wannier center charge spectra for occupied bands. The spectra is gapped, disallowing assignment of
non-trivial topology. (c) Spectra considering a slab of 40 unit cells along the x̂ direction and periodic

boundary conditions along ŷ. No determination about bulk topology can be made due to the absence of
gapless states. (d) Schematic of path for calculation of in-plane Wilson loop for determining magnitude of

ground-state spin-Chern number, |Cs,G| as a function of k0 : 0 ! ⇡. (e) In-plane loop Wannier center
charge (WCC) spectra for eq. (2). The spectra clearly demonstrates a double winding, corresponding to a
ground state bulk invariant, |Cs,G| = 2.(f) Wannier center charge spectra for spin-resolved Wilson loop

along x̂ axis as a function of transverse momenta, ky, displaying a double winding, indicating a spin Chern
number |Cs,G| = 2. (g) Local density of states on the flux tube as a function of the flux strength,

demonstrating the presence of vortex bound modes, but the absence of spectral-flow. (h) Induced charge as
a function of filling the VBMs seen in (g). The results demonstrate the robust nature of spin-charge

separation upon breaking the degeneracy of the mid-gap VBMs at ⇡-flux.

increased from zero to be equivalent with the area
of the first Brillouin zone. This is shown schemat-
ically in Fig. (4(d)). The in-plane Wilson loop is
calculated as,

Wn,j = Pexp


i

I
Aj,n(k)dkj

�
. (3)

Upon integration, we find Wn,j = exp (i✓nn̂ · �),
where ✓n is the non-Abelian flux. Wannier cen-
ter charges (WCCs), j̄, follow as eigenvalues of
Im(Ln(Wn,j)), therefore Wannier center charges are
equivalent to ±|✓|mod⇡. By plotting the winding
of WCCs we can identify the flux enclosed by the
contour as a function of the area enclosed. The re-
sults, shown in Fig. (4(e)), demonstrate that the
ground-state spin-Chern number, Cs,G = |2|.
We could have also computed the ground-state spin
Chern number following the procedure outlined by
Prodan[12]. This procedure requires defining the
projected spin operator (PSO), P (k)ŝP (k), where
P (k) is the projector onto occupied bands and ŝ

is a chosen spin-quantization axis. In the absence

of spin-orbit coupling the eigenvalues of the PSO
are fixed as ±1, however since we have introduced
spin-orbit coupling, the eigenvalues are no longer
pinned at ±1. Nevertheless, a gap in the eigenvalue
spectra remains for our given model when selecting
ŝ = sz = �3 ⌦ ⌧0, allowing for calculation of the
spin-Chern number via spin-resolved Wilson loop as
detailed in Lin et. al[25]. The results shown in Fig.
(4(f)), demonstrate the WCC spectra when perform-
ing the spin-resolved Wilson loop along the x̂ axis
as a function of transverse momenta ky for the band
corresponding to negative eigenvalues of the PSO,
✓
�
x . The conclusion is in alignment with the ear-
lier determination that the ground states supports
|Cs,G| = 2. We emphasize though, that this method
is extremely challenging to implement in DFT de-
rived models where detailed information regarding
our basis is not always easily accessible, particularly
in an automated workflow.

Having established the magnitude of the bulk invari-
ant, we turn to insertion of a magnetic flux tube.
The local density of states on the flux tube inserted

(winding of in plane Wilson loop spectrum)

(Tyner & Goswami, arXiv:2304.05424)
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FIG. 4: (a) Band structure along high-symmetry path for tight-binding model given by eq. (2). (b)
Wannier center charge spectra for occupied bands. The spectra is gapped, disallowing assignment of
non-trivial topology. (c) Spectra considering a slab of 40 unit cells along the x̂ direction and periodic

boundary conditions along ŷ. No determination about bulk topology can be made due to the absence of
gapless states. (d) Schematic of path for calculation of in-plane Wilson loop for determining magnitude of

ground-state spin-Chern number, |Cs,G| as a function of k0 : 0 ! ⇡. (e) In-plane loop Wannier center
charge (WCC) spectra for eq. (2). The spectra clearly demonstrates a double winding, corresponding to a
ground state bulk invariant, |Cs,G| = 2.(f) Wannier center charge spectra for spin-resolved Wilson loop

along x̂ axis as a function of transverse momenta, ky, displaying a double winding, indicating a spin Chern
number |Cs,G| = 2. (g) Local density of states on the flux tube as a function of the flux strength,

demonstrating the presence of vortex bound modes, but the absence of spectral-flow. (h) Induced charge as
a function of filling the VBMs seen in (g). The results demonstrate the robust nature of spin-charge

separation upon breaking the degeneracy of the mid-gap VBMs at ⇡-flux.

increased from zero to be equivalent with the area
of the first Brillouin zone. This is shown schemat-
ically in Fig. (4(d)). The in-plane Wilson loop is
calculated as,

Wn,j = Pexp


i

I
Aj,n(k)dkj

�
. (3)

Upon integration, we find Wn,j = exp (i✓nn̂ · �),
where ✓n is the non-Abelian flux. Wannier cen-
ter charges (WCCs), j̄, follow as eigenvalues of
Im(Ln(Wn,j)), therefore Wannier center charges are
equivalent to ±|✓|mod⇡. By plotting the winding
of WCCs we can identify the flux enclosed by the
contour as a function of the area enclosed. The re-
sults, shown in Fig. (4(e)), demonstrate that the
ground-state spin-Chern number, Cs,G = |2|.
We could have also computed the ground-state spin
Chern number following the procedure outlined by
Prodan[12]. This procedure requires defining the
projected spin operator (PSO), P (k)ŝP (k), where
P (k) is the projector onto occupied bands and ŝ

is a chosen spin-quantization axis. In the absence

of spin-orbit coupling the eigenvalues of the PSO
are fixed as ±1, however since we have introduced
spin-orbit coupling, the eigenvalues are no longer
pinned at ±1. Nevertheless, a gap in the eigenvalue
spectra remains for our given model when selecting
ŝ = sz = �3 ⌦ ⌧0, allowing for calculation of the
spin-Chern number via spin-resolved Wilson loop as
detailed in Lin et. al[25]. The results shown in Fig.
(4(f)), demonstrate the WCC spectra when perform-
ing the spin-resolved Wilson loop along the x̂ axis
as a function of transverse momenta ky for the band
corresponding to negative eigenvalues of the PSO,
✓
�
x . The conclusion is in alignment with the ear-
lier determination that the ground states supports
|Cs,G| = 2. We emphasize though, that this method
is extremely challenging to implement in DFT de-
rived models where detailed information regarding
our basis is not always easily accessible, particularly
in an automated workflow.

Having established the magnitude of the bulk invari-
ant, we turn to insertion of a magnetic flux tube.
The local density of states on the flux tube inserted

Spin-charge separation for even integer QSH state

Induced electric charge away 
from half-filling 

Spectrum for magnetic flux tube

12

FIG. 8: Spin-expectation value for half-filled
system of 20⇥ 20 lattice sites as a function of flux

strength for inserted magnetic vortex in the
presence of U(1) spin-conservation symmetry
(denoted U(1)) and generic spin-orbit-coupling
(denoted SOC), fixing t3,4 = 0 and t3,4 = 1

respectively in eq. (2). The results demonstrate
that the flux tube continues to serve as a

spin-pump in the absence of U(1) symmetry.

tivity. In Fig. (7), we display the surface state spec-
tral density, calculated using the Wannier Tools soft-
ware package[75, 76], in the vicinity of the bulk-gap,
demonstrating the lack of gapless surface states and
emphasizing that the insulators cannot be identified
by the Fu-Kane Z2-index or calculation of WCCs
along principal axes.
Calculation of the spin-Hall conductivity as a
method for detecting non-trivial bulk topology has
also become commonplace due to the development
of advanced software including the Wannier-Berri
package[74, 77]. We compute the spin Hall conduc-
tivity along principle spin-quantization axes and dis-
play the results in Fig. (7). It is clear in each case
that the spin-Hall conductivity is non-vanishing in
the bulk gap, a signature of non-trivial bulk topol-
ogy. Although it is important to note that the con-
ductivity is non-quantized in each case. This is to
be expected given the lack of spin-conservation sym-
metry.

APPENDIX C: MOMENTUM SPACE
ANALYSIS FOR 1H-MX2 TMDS

The bulk band structure along the high-symmetry
path for each member of the 1H-MX2 TMD family
is displayed in Fig. (9). We note that each band
structure supports a bulk gap, |�E| � 1.1 eV

Calculation of WCC spectra represents the most
common tool for topological diagnosis involving the
ground-state Berry connection[18, 20, 23]. The re-
sults of a WCC calculation along the x1 direction as
a function of transverse momenta k2 are displayed in
Fig. (9). These figures demonstrate that the WCC
spectra is gapped in each case, in correspondence
with the lack of non-trivial Z2 index and gapless sur-
face states. The trivial classification due to WCCs
provides further explanation as to why these materi-
als have evaded topological classification prevously.

APPENDIX D: ROBUSTNESS OF
TOPOLOGICAL CLASSIFICATION TO
INCLUSION OF OCCUPIED BANDS

The subject of fragile topological phases has received
significant attention in recent years[78–80]. Band
structures which exhibit fragile topology are often
classified as those in which the occupied bands ex-
hibit a Wannier obstruction, however, the obstruc-
tion can be removed through addition of occupied
topologically trivial bands. With the exception of
�-bismuthene, we do not consider a two-dimensional
insulator in which the occupied subspace considered
in the Wannier tight-binding (WTB) model sup-
ports a Wannier obstruction when computing Wan-
nier center charges along principle axes in this work.

In this appendix, we focus on the question of
whether inclusion of deeper-energy, occupied bands,
can trivialize the observed behavior upon vortex in-
sertion. A definitive answer can be given to this
question. The inclusion of deeper lying, filled bands

does not trivialize the observed topological behavior.

This statement can be definitively made as the auto-
mated procedure providing the initial screening by
constructing a WTB via the SCDM method con-
siders bands far below the Fermi energy. As a re-
sult, we can directly compare the WTB generated
in an automated fashion and the low-energy man-
ually generated WTB for materials in the 1H-MX2

class. We demonstrate this explicitly for MoS2 in
Fig. (10). The automated WTB model includes 26
occupied bands. By contrast, the low-energy model
constructed from d-orbitals of Mo and p-orbitals of
S, admits only 14 occupied bands. Nevertheless, the
results upon vortex insertion are identical as seen in
Fig. (10). Confirming that the inclusion of occu-
pied bands, further from the Fermi energy, does not
trivialize our observations.

Induced spin polarization
at half-filling
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(a) (b)

�EDFT

MoTe2 1.1 eV
MoS2 1.6 eV
MoSe2 1.5 eV
WSe2 1.6 eV
WS2 1.8 eV
WTe2 1.1 eV

(c)

FIG. 2: (a) Structure of 1H-MX2 phase for
two-dimensional transition metal dichalcogenides.
Blue atoms indicate transition metal (M), and

yellow atoms indicate chalcogen atoms. (b) Bulk
band structure along high-symmetry path for
1H-MoTe2. (c) Calculated bulk band-gap for

materials of interest.

first principles calculations based on density-
functional theory (DFT) are carried out using
the Quantum Espresso software package [37–39].
Exchange-correlation potentials use the Perdew-
Burke-Ernzerhof (PBE) parametrization of the gen-
eralized gradient approximation (GGA) [40]. The
Wannier90 and Z2pack software packages were uti-
lized in calculation of all topological invariants
[19, 23, 41]. We consider all non-magnetic two-
dimensional insulators detailed by Mounet et. al[1].
Utilizing the listed optimal lattice parameters and
atomic positions in all calculations. A schematic of
the automated workflow is shown in Fig. (1).
In order to facilitate automated analysis of the bulk
topology, Wannier tight-binding (WTB) models are
constructed through use of the SCDM method intro-
duced by Vitale et. al[42]. Manipulation of Wannier
tight-binding model for vortex insertion is done with
a custom python program which will be made pub-
licly available upon being developed into a stand-
alone package. After an initial screening utilizing
the automated Wannier tight-binding model, mate-
rials classified as topological are reexamined. The
criteria for topological classification is based on the
concept of spin-charge separation.
QSH insulators were first proposed by Qi and
Zhang[28] and Ran et. al[29], as platforms for spin-
charge separation. The mechanism of spin-charge
separation was shown to be insertion of a magnetic
flux tube (vortex). In the original works, it was

shown that a � = hc/(2e) (⇡-flux) tube binds 2N ,
degenerate states in a non-trivial Z2 insulator with
odd integer spin Chern number Cs,G = N . This
concept was then extended to the situation of ar-
bitrary spin-Chern numbers by Tyner et. al[15].
Spin charge separation can be observed by tuning
filling fraction of the mid-gap vortex bound modes
(VBMs). If the VBMs are half-filled, the vortex ac-
quires induced spin but no induced charge. If we
dope by Ne 2 [�N,+N ] electrons away from half-
filling, occupying all VBMs, the vortex acquires in-
duced charge �Q = Ne ⇥ e. If this condition is sat-
isfied, the spin Chern number can be directly calcu-
lated by fixing Ne = N such that �Q = |Cs,G| ⇥ e.
This is the criteria for topological classification em-

ployed in this work. Due to the computational bur-
den associated with computation of induced spin-
densities we reserve it for a proof-of-principle cal-
culation in a tight-binding model presented in Ap-
pendix A, which captures the topological nature of
the materials examined in our work.

It was further shown by Qi et. al[28], that it is
possible to confirm that a two-dimensional insula-
tor supports spin-charge separation without explicit
calculation of induced charge. This is accomplished
by tuning magnitude of the flux, �, from 0 to the
flux quanta �0 = hc/e. As the flux is tuned, if
the vortex acts as a spin-pump, pumping N states
from the valence(conduction) subspace to the con-
duction(valence) subspace it is confirmed that the
insulator supports spin-charge separation and the
bulk invariant can be determined by observing the
spectral flow of VBMs across the bulk gap.

For two-dimensional topological insulators trivial
under Z2 classification, additional symmetries such
as Kramers degeneracy throughout the Brillouin
zone (PT ) and particle-hole symmetry are required
to realize full degeneracy of VBMs at ⇡-flux, yield-
ing a fully connected spectral flow. In the ab-
sence of additional symmetries it is possible to break
the degeneracy of vortex bound modes at ⇡-flux.
This situation does not disallow the assignment of a
ground state bulk invariant[11, 12] or spin-pumping.
Rather, verification that the non-degenerate VBMs
are correlated and support spin-charge separation as
a function of filling and spin-pumping as a function
of flux, is required through direct calculation. For
exemplification of this process and verification that
these systems remain platforms for spin-charge sep-
aration in a simplified tight-binding model, please
consult appendix A.

To allow for more fine-grained analysis of those ma-
terials in the 1H-MX2 family, a second WTB model
is produced exactly replicating only the Kramers-
degenerate bands nearest to the Fermi energy using
carefully selected orbitals rather than an automated

(Tyner & Goswami, arXiv:2304.05424)
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(a) (b) (c)

(d) (e) (f)

FIG. 3: Local density of states on vortex for (a) 1H-MoTe2 and (d) 1H-WTe2, TMDs admitting ground
state spin Chern number |Cs,G| = 2, as a function of flux strength. State vs. energy upon insertion of ⇡-flux
vortex in a system of 20 ⇥ 20 unit cells for (b) 1H-MoTe2 and (e) 1H-WTe2. Induced charge on the vortex
as a function of doping away from half-filling of vortex bound modes (VBMs) by Ne states. Results display
robust nature of spin-charge separation and relation, �Q = |Cs,G|⇥ e, even in the absence of additional

symmetries forcing a complete degeneracy of VBMs at ⇡-flux for (c) 1H-MoTe2 and (f) 1H-WTe2.

selection. As these bands are significantly separated
energetically from all other bands, the TB model re-
produces the DFT data precisely. In construction
of both TB models, a 40 x 40 x 1 Monkhorst-Pack
grid of k-points is utilized as well as a plane wave
cuto↵ of 100 Ry. Spin-orbit coupling is accounted
for in all calculations. To computationally simulate
the flux tube, all hopping elements Hij , connecting
lattice sites ri and rj are modified to Hije

i�ij , where
we define the Peierls factor,

�ij =
�

�0

Z rj

ri

ẑ ⇥ r

r2
· dl. (1)

While a our sample size of 141 materials is consid-
erably smaller than recent high-throughout studies
of topological materials[43–47], the materials iden-
tified are experimentally realizable and support sig-
nificant band gaps. This is in contrast to other high-
throughput scans which, despite displaying tremen-
dous technical progress, have not identified a topo-
logical insulator supporting a larger band-gap than
previously known topological insulators[48].
1H-MX2 Material Family: Transition metal
dichalcogenides (TMDs) have emerged as a premier
class of topological materials. In three-dimensions,
�-WTe2 and �-MoTe2 have been identified as type-
II Weyl semimetals[49–55] while �-MoTe2 was pro-
posed to be a higher-order topological insulator
(HOTI)[56]. In two-dimensions, Qian et. al[57]

famously demonstrated that the 1T’ phase of 2D
TMDs in the MX2 family with M=(molybdenum,
tungsten) and X=(selenium, tellurium, or sulfur) are
unit strength spin-Hall insulators. As a consequence,
TMDs have received considerable experimental at-
tention in the fields of Moire systems[58–64], topo-
logical superconductivity[34–36, 65–71], and be-
yond.

The 1H phase of MX2 TMDs is constructed from
a Bernal ABA stacking of two hexagonal layers of
chalcogen atoms (X) with an intermediate hexagonal
layer of a transition-metal (M)[72, 73]. A schematic
of the structure can be seen in Fig. (2(a)), displaying
the three-fold rotational symmetry. The 1H-MX2

family has been reported to support band-gaps in
the range of 1.1-1.8 eV. The calculated band-gaps
are shown in Tab. (2(c)). Due to these values, gi-
ant in the context of topological insulators, they of-
fer significant experimental control and are consid-
ered prime candidates for technological applications.
The bulk electronic band structure along the high-
symmetry path, � � M � K � � is shown in Fig.
(2(b)) for MoTe2, band structures for the remaining
materials in this family are available in appendix C.
As we are primarily concerned with bulk topological
classification the surface spectra is relegated to ap-
pendix B, however we note that the surface spectra
is gapped in each case.

To best visualize the e↵ect of vortex insertion, we

(Tyner & Goswami, arXiv:2304.05424)
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FIG. S9. Materials displaying evidence of non-trivial bulk topology, identified in the course of the high-throughput
search.
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FIG. S5. (a)-(d) Spin-hall conductivity for 1H-MX2 TMDs admitting ground state spin Chern number, |Cs,G| = 2.
In the absence of spin-conservation symmetry the spin-Hall conductivity is not quantized along a given principle
axis. However, the non-zero result within the bulk gap is indicative of non-trivial bulk-topology. (e)-(h) Spectral
density on zig-zag surface of 1H-MX2 TMDs. While surface bound mid-gap states exist, indicating the existence of
non-trivial bulk-topology, the spectra remains gapped, disallowing definitive assignment of the bulk invariant.

size 60 ⇥ 60 unit cells is given in Fig. (1(g)). While four VBMs are visible within the mid-gap, they are not
four-fold degenerate. As a result, we do not observe gapless spectral-flow connecting valence and conduction
states upon tuning the strength of the vortex.

In order to demonstrate that in the absence of a ground-state degeneracy at ⇡-flux, spin-pumping and
quantized induced charge on the vortex remains una↵ected, we directly calculate the induced charge as a
function of filling following the procedure described in the main body. The results are visible in Fig. (1(h)).
We observe induced charge as a function of filling follows the relation �Q = Ne ⇥ e with Ne 2 [�2, 2].
This conclusively illustrates that the non-degenerate VBMs originating from conduction/valence states are
correlated and not acting as independent end states to spinful Su-Schie↵er-Heeger chains. Moreover the

Calculation of spin Hall conductivity (WannierBeri)

(Tyner & Goswami, arXiv:2304.05424)



4

(a) (b) (c)

(d) (e) (f)

Max

Min

(g)

Max

Min

(h)

Max

Min

(i)

Max

Min

(j)

Max

Min

(k)

Max

Min

(l)

FIG. S5. (a)-(d) Spin-hall conductivity for 1H-MX2 TMDs admitting ground state spin Chern number, |Cs,G| = 2.
In the absence of spin-conservation symmetry the spin-Hall conductivity is not quantized along a given principle
axis. However, the non-zero result within the bulk gap is indicative of non-trivial bulk-topology. (e)-(h) Spectral
density on zig-zag surface of 1H-MX2 TMDs. While surface bound mid-gap states exist, indicating the existence of
non-trivial bulk-topology, the spectra remains gapped, disallowing definitive assignment of the bulk invariant.

size 60 ⇥ 60 unit cells is given in Fig. (1(g)). While four VBMs are visible within the mid-gap, they are not
four-fold degenerate. As a result, we do not observe gapless spectral-flow connecting valence and conduction
states upon tuning the strength of the vortex.

In order to demonstrate that in the absence of a ground-state degeneracy at ⇡-flux, spin-pumping and
quantized induced charge on the vortex remains una↵ected, we directly calculate the induced charge as a
function of filling following the procedure described in the main body. The results are visible in Fig. (1(h)).
We observe induced charge as a function of filling follows the relation �Q = Ne ⇥ e with Ne 2 [�2, 2].
This conclusively illustrates that the non-degenerate VBMs originating from conduction/valence states are
correlated and not acting as independent end states to spinful Su-Schie↵er-Heeger chains. Moreover the

Edge spectrum (not fully connected) 

(Tyner & Goswami, 
arXiv:2304.05424)



Summary

• Magnetic-flux tube: non-perturbative probe to predict spin Chern number 
regardless of the presence of additional symmetries or gapless edge 
states 

• Real-space probes are ideally suited for quasi-crystals, disordered, and 
correlated systems

• New experiments on 1H TMDs and closely related large band gap 
materials?

Thank you!


