

ELECTRICAL RESISTIVITY RAT OF ALUMINUM P---- = 2.44 x 10⁻⁶ ohm cm

= 2.53 x 10

Pawlek and Rogalla

Cryoresistive and Superconductive Aerospace Main Power Transmission Cables

<u>Chris Kovacs^{1,2}</u>, Matt Rindfleisch¹, Tom Bullard³, Timothy Haugan³, Michael Sumption⁴, Mike Tomsic¹, Kiruba Haran⁵

¹Hyper Tech Research Inc., ²Scintillating Solutions LLC, ³ Air Force Research Laboratory, ⁴The Ohio State University, ⁵University of Illinois Urbana-Champaign

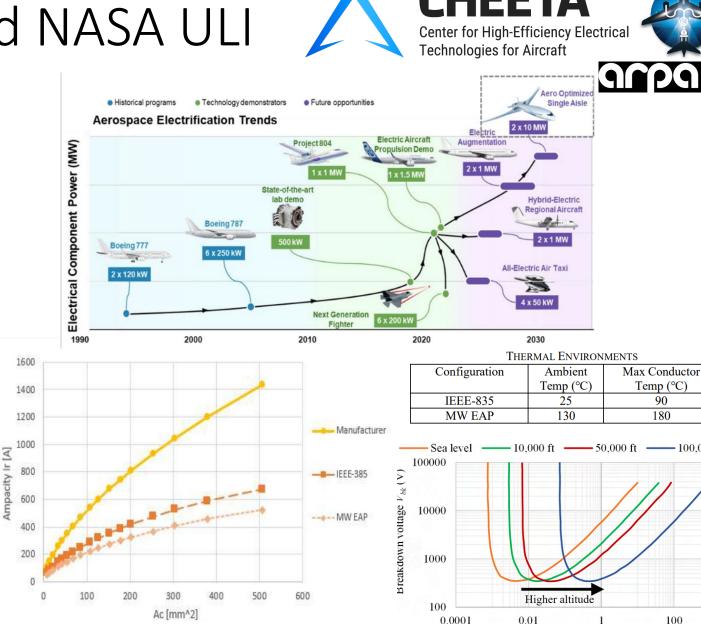
ICMC 2023

grpg

July 11, 2023

THE OHIO STATE UNIVERSITY COLLEGE OF ENGINEERING

Hyper Tech

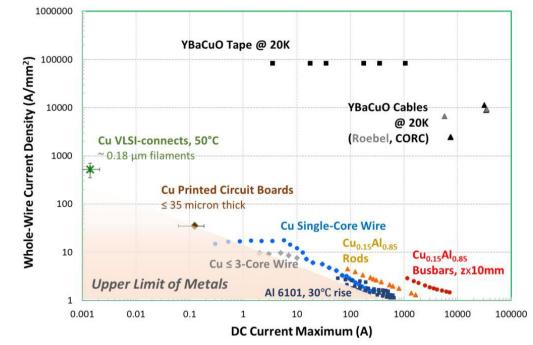

Summary

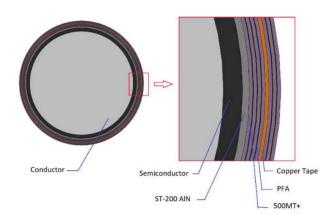
- Motivation for DC aerospace cryo-cables
 - ARPA-E CABLES and NASA-ULI
- Current State of the Art (Non-Cryo)
- Cryoresistive cables
 - A proposed layout
 - Thermal management
 - Ampacity demonstrators
 - Terminations
 - Electric fields and insulation testing
- Superconducting cables
 - Thermal management
- Future Work

ARPA-E CABLES and NASA ULI

- Both NASA and ARPA-E are in the process of developing lower mass aerospace electrical wiring and interconnection systems (EWIS)
- Innovations in electrical insulation and current carrying capacity
- Very high voltages (10 kVDC) makes ambient temperature cables more competitive versus cryogenic options
 - Cryogenic system masses
 - Cryoresistive substantially lighter for higher currents which do not require advances in insulation and other components (±270 VDC)
- The mass of the EWIS is a showstopper for MEA if not lightweighted from COTS
 - System Redundancy for MEA

Dever "Cable Key Performance Parameters for Megawatt Electrified Aircraft Propulsion Conceptual Aircraft Model" (2022) Kshirsagar "Anatomy of a 20 MW Electrified Aircraft: Metrics and Technology Drivers" (2020)

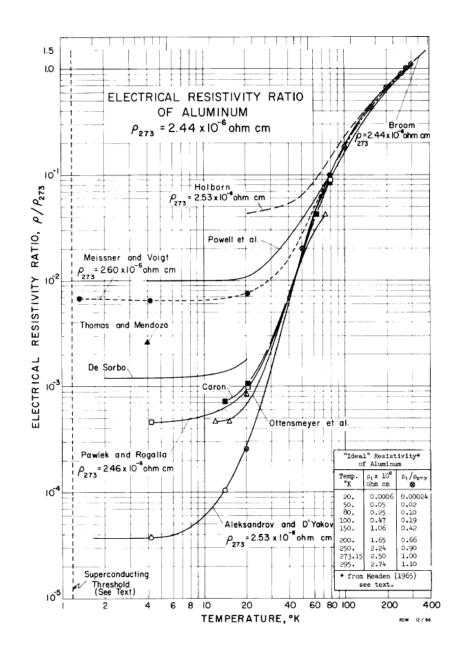

Distance (mm)


Current State of the Art (Non-Cryo)

- Increasing voltage to drop current and mass of heavy conductor
- For fixed ampacity (a few A/mm²) and current, cable metal fraction determined
- Smaller cable = thicker insulation for same voltage and material (E-field)

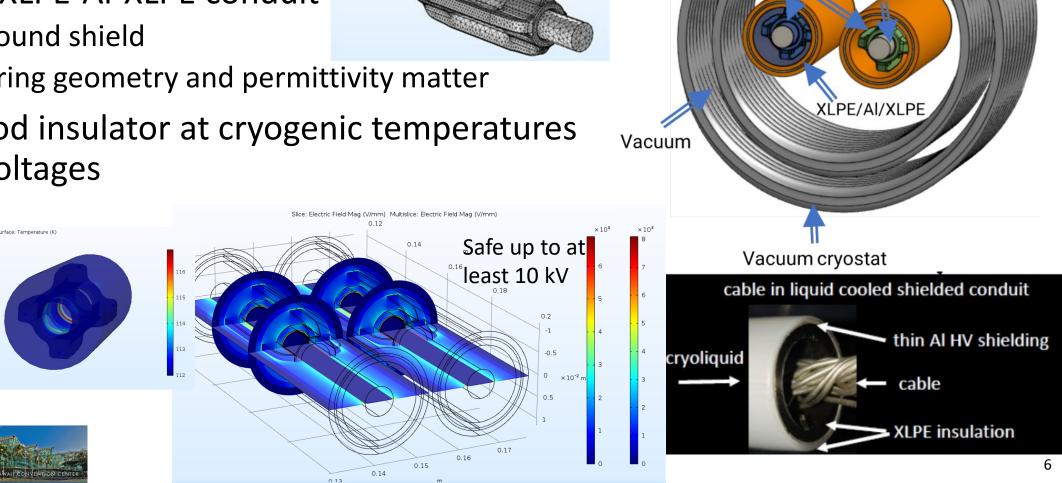
Insulation Thickness (m) = $r \times \left(e^{SF \times V/r \times BDS} - 1\right)$

- Increased risk of PD and degradation overtime with MVDC
- Cuponal (Cu-Al composite) or Al best conductor option



Sebastian "Design and Scaling Laws of a 40-MW-class Electric Power Distribution System for Liquid-H2 Fuel-Cell Propulsion" (2021) https://newatlas.com/aircraft/rolls-royce-delivers-2-5-megawatt-generator-hybrid-air-propulsion/ Azizi "Design of a Cable System for a High-Power Density MVDC Aircraft Electric Power System" (2022)

Cryoresistive Cables


- LH₂ or LNG, cold sink fuel onboard to utilize
 - Requires vaporization for consumption
- Direct force-flow cryogen fluid cooling, cryoresistive cables can carry large ampacities
 - Lower voltages for fixed power
- Cryogenic fluid circulation system
- Replenishing dielectric fluid can reduce PD
 - Do not fully rely on it (bubbles)
- LH₂ cable lower mass than LNG cable

Cryoresistive Cable Proposed Layout

- Multifilamentary uninsulated cable, direct fluid cooled
- Centered in XLPE-Al-XLPE conduit
 - Al-layer ground shield
 - Centering ring geometry and permittivity matter
- XLPE is a good insulator at cryogenic temperatures up to high voltages

Centering

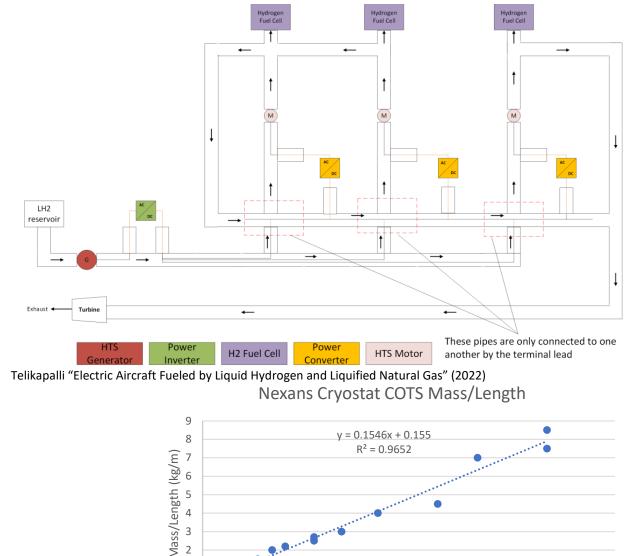
ring and bubble

breaker

Cryo-

resistive

Cable


 LH_2

Cryoresistive Cable Thermal Management

- High surface area cable
- Flowing cryogen pressure drop with small channels over long cable lengths
- Circulation/fuel pumps (fluid/fluid heat exchangers are low mass)
- Smaller conduit → smaller cryostat → lower cable mass
- Smaller conduit → larger pressure drop → larger pump mass (or pressure limit of conduit)
- Subcooled pressurized fluid (low thermal budget)
 - 2-phase flow and latent heat of vaporization
- Fuel primary or secondary coolant
- Many (AC and DC) EWIS architectures possible

Armored stainless steel cryostat = 7.0 kg/m Unarmored stainless steel cryostat = 3.5 kg/m Unarmored aluminum cryostat = 1.2 kg/m

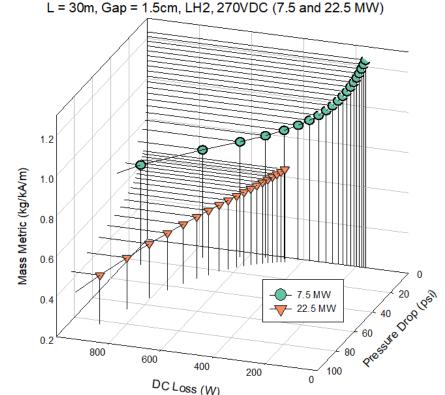
10

20

30

ID (mm)

7

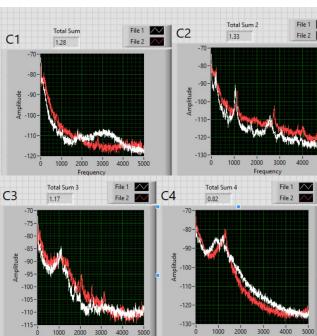

60

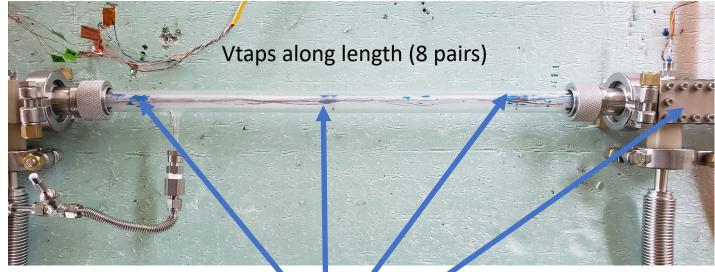
50

Cryoresistive Cable Optimization

- 2-phase flow along length, Lockhart-Martinelli
 - Model (currently) assumes constant vapor quality
- Pressure limit: conduits, pump, weakest link
- Vapor volume quality = thermal limit (0.3)
 - Vapor density dependent on system pressure
 - Avoiding slug-plug flow
- Change gap to conduit after finding suitable cable size $\int_{L^2} \frac{\rho(T) \times L}{\rho(T) \times L} + 0 \qquad \times L$

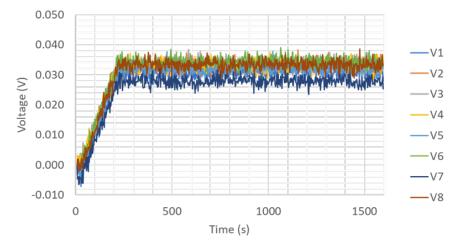
$$\chi_{LH2} = 0.3 = \frac{I^2 \frac{\rho(T) \times L}{A_{x-cable}} + Q_{cryostat} \times L}{v_{flow} \left(L_v \left[\frac{J}{kg} \right] \times \rho_{gas} \right)}$$

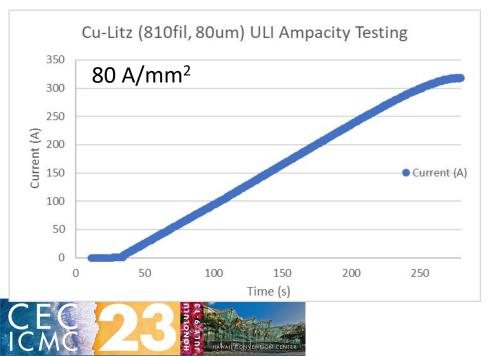



Cable Length 30 m	30% vapor safe cable radius (mm)		ID cryostat needed (mm)	Mass Cryostat, Nexans (kg/m)	Mass Cable (kg/m)	Cryocable Total Mass (kg)	COTS (kg)	Cryo versus COTS Ratio (#)	Je (A/mm2), high h
27777 A, 0.1 kg/s	41.20	1.45	182.60		28.80			0.18	5.21
27777 A, 1 kg/s	13.03	18.29	137.28	21.38	2.88	727.76	9475.16	0.08	52.08
83333 A, 0.1 kg/s	123.60	0.49	508.36	78.75	259.17	10137.45	68763.69	0.15	1.74
83333 A, 1 kg/s	39.04	9.28	205.28	31.89	25.86	1732.42	68763.69	0.03	17.40
Cable Length 20 m	30% vapor	Gap to conduit	ID cryostat	Mass Cryostat,	Mass	Cryocable		Cryo versus	Je
	safe cable	for < 200	needed	Nexans	Cable	Total Mass	COTS	COTS	(A/mm2),
	radius (mm)	Psi (mm)	(mm)	(kg/m)	(kg/m)	(kg)	(kg)	Ratio (#)	high h
27777 A, 0.1 kg/s	33.66	1.57	152.92	23.80	19.22	860.34	9475.16	0.09	7.80
27777 A, 1 kg/s	10.64	18.23	127.48	19.86	1.92	435.68	9475.16	0.05	78.10
83333 A, 0.1 kg/s	100.77	0.53	417.20	64.65	172.27	4738.45	68763.69	0.07	2.61
83333 A, 1 kg/s	31.90	9.78	178.72	27.79	17.26	900.97	68763.69	0.01	26.07
Cable Length 10 m	30% vapor	Gap to conduit	ID cryostat	Mass Cryostat,	Mass	Cryocable		Cryo versus	Je
	safe cable	for < 200	needed	Nexans	Cable	Total Mass	сотѕ	сотѕ	(A/mm2),
	radius (mm)	Psi (mm)	(mm)	(kg/m)	(kg/m)	(kg)	(kg)	Ratio (#)	high h
27777 A, 0.1 kg/s	23.79	1.79	114.32	17.83	9.60	548.60	9475.16	0.06	15.62
27777 A, 1 kg/s	7.52	17.85	113.48	17.70	0.96	373.17	9475.16	0.04	156.35
83333 A, 0.1 kg/s	71.25	0.62	299.48	46.45	86.12	2651.53	68763.69	0.04	5.23
83333 A, 1 kg/s	22.57	10.55	144.48	22.49	8.64	622.67	68763.69	0.01	52.07

Transparent Vacuum Jacketed Cryostat

- Attempt to quantify ampacity and vapor fraction
- Ultrasonic transducers, precursors
- So far, just a proof of ampacity
 - Pressure drop (L=1 m) too small



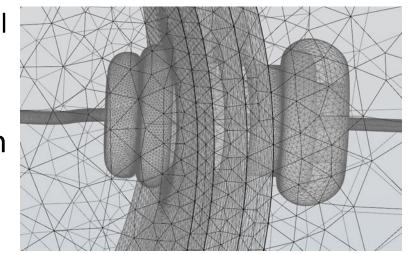


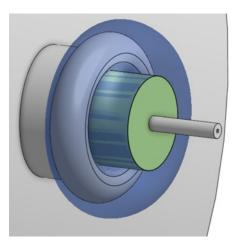
191 A (166 A/mm2), ~0.010 kg/s, hold for 1400s

3-m Flexible Armored Nexans Cryostat

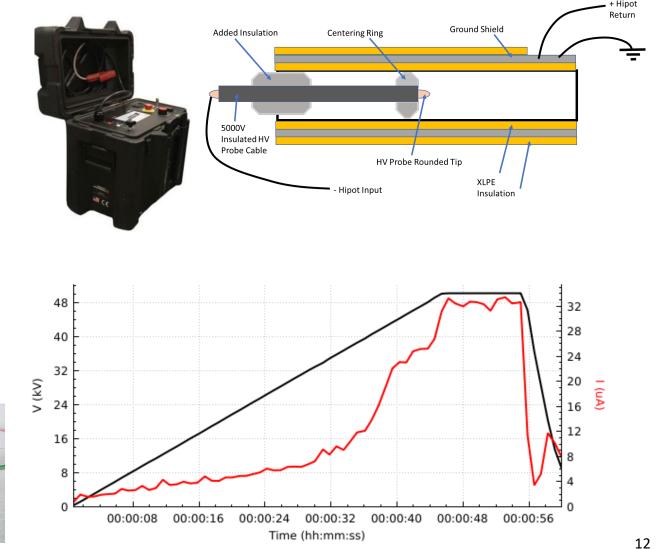
- Proof of conduits, sealing techniques, and ampacity over longer length
- Cu-Litz in flowing LN₂
- Weak bonds from XLPE-epoxy-XLPE in manifolds/junctions



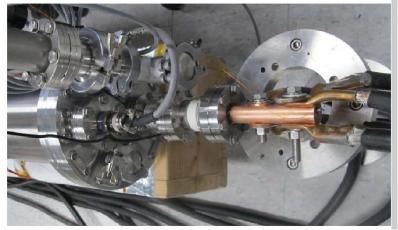


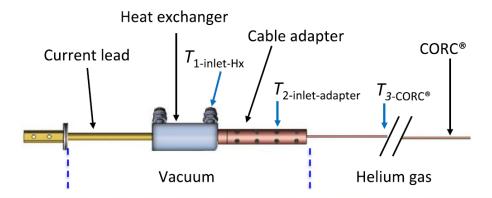

Cryoresistive Terminations

- Plug-receptacle style, up to 10 kVDC 2pole 10 MW cable
 - Voltage rating much higher
- Closed-loop, fuel as secondary coolant
- Fluid flow is parallel in the conduits, anti-parallel on the return outside of the conduits
 - Turn around within termination
 - Takes advantage of space left by non-coaxial design
 - Requires an internal manifold system
- Compact MVDC ground shield extraction
 - Paschen curve



Cryoresistive Cable Electric Fields and Insulation


- XLPE is a known reliable cryogenic insulation
- Hipot tested across inner XLPE layer at room temperature, good to 50 kV



Superconducting Cable (Future Work)

- As part of NASA ULI, CORC cable in cryostat from Advanced Conductor Technologies (Boulder, CO)
- Look for avenues for lightweighting and advanced thermal management particularly at terminations
- He-gas cooled
- Less than single digit psi (10s of mbar)
- Eventually NASA will ask for mass of demonstration system
- ±270 VDC

van der Laan "A turnkey gaseous helium-cooled superconducting CORC® dc power cable with integrated current leads" (2022)

Future Work

- Pushing forward with cryoresistive cable terminations demonstrations
- Further cable testing to validate sealing mechanisms at polymer/polymer interfaces
- Advance lightweighting strategies in demonstration systems
- He-gas cooled CORC demonstration

Thank You CEC-ICMC 2023!

"Hawaii is one of those places that keeps topping itself. Just when you think you'll never see another sunset as beautiful, there comes a sunrise that only Gauguin could imagine."

-Thomas Sullivan Magnum IV (1982)

