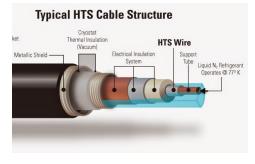


Lightweight Clad Bimetal Conductors for Cryogenic Applications

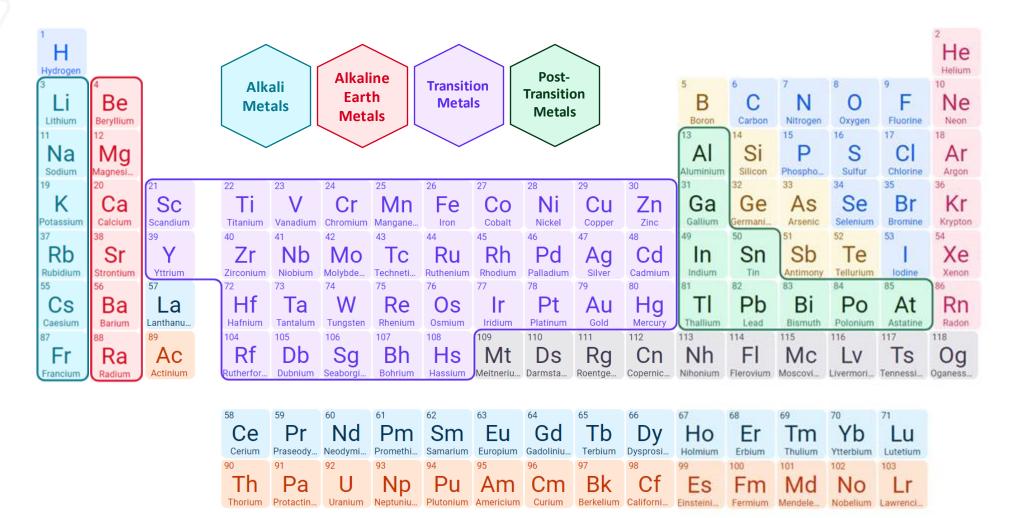
Alfonso J Cruz Feliciano, Amrita Ghosh, Joshua Kacher, Lukas Graber, Zhiyang Jin

M4Or1B-06

Clad Bimetal Conductors


Two diverse metals or alloys are metallurgically bonded to achieve functional advantages that cannot be obtained with a single metal.

Lightweight cladded conductor applications



*Images extracted from Google

2

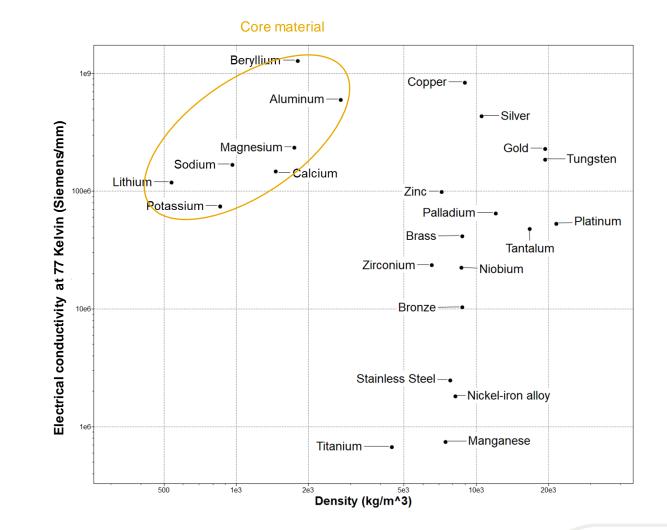
Clear Elemental Trends

Note: While cryogenic data are often available, they are sometimes not for required **level of purity**...

Core Material Selection- Requirements

Function

Lightweight and highly conductive core material


Constraints

- Good electrical/thermal conductor
- Low Density
- High specific heat
- Bulk material

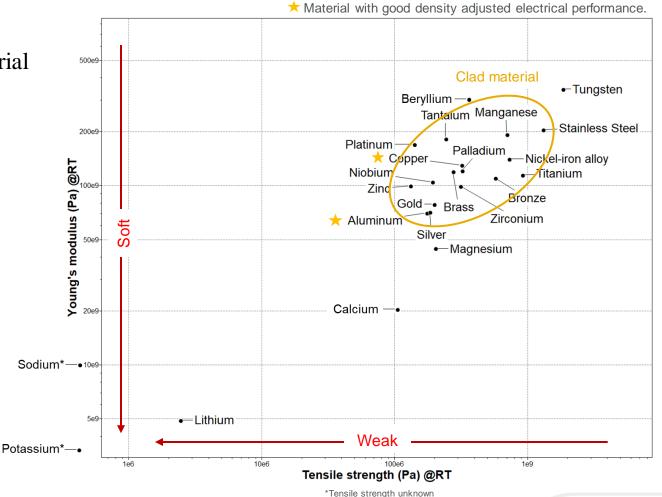
Objective

- Minimize weight
- Maximize electrical and thermal conductivity

Free Variable Choice of Material

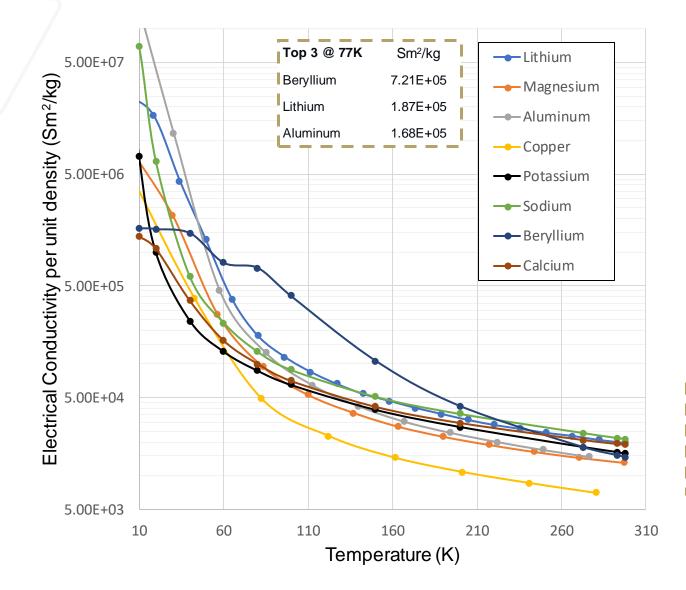
Clad Material Selection- Requirements

Function

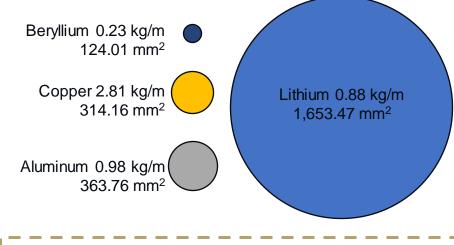

Lightweight and highly conductive clad material

Constraints

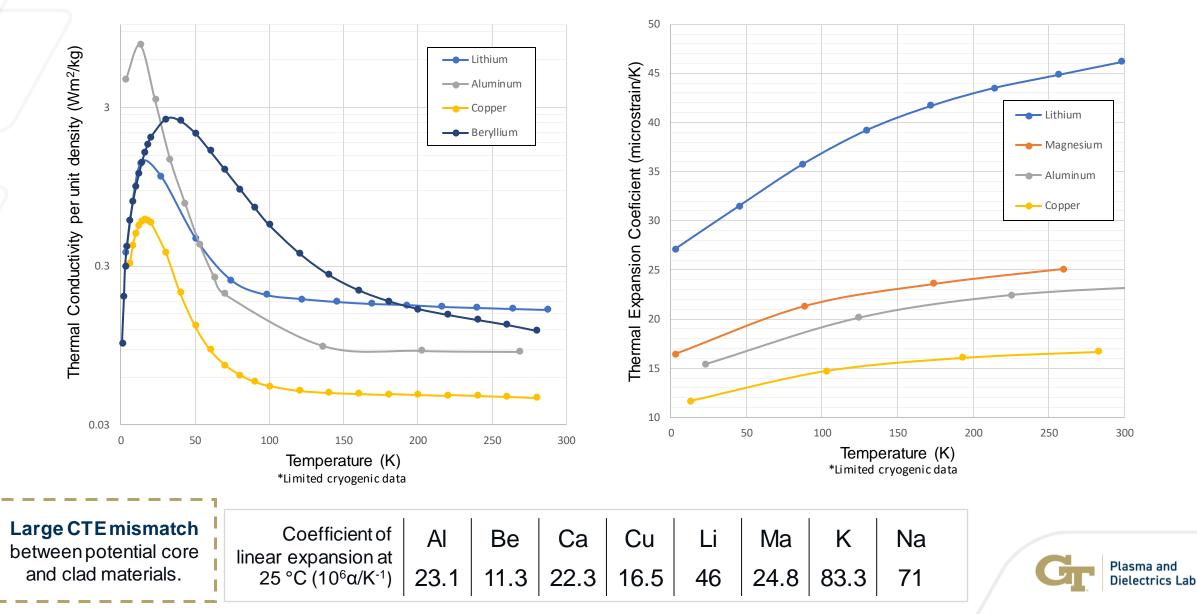
- Good electrical/thermal conductor
- Low Density
- Chemically stable
- High specific heat
- Adequate structural strength
- Bulk material


Objective

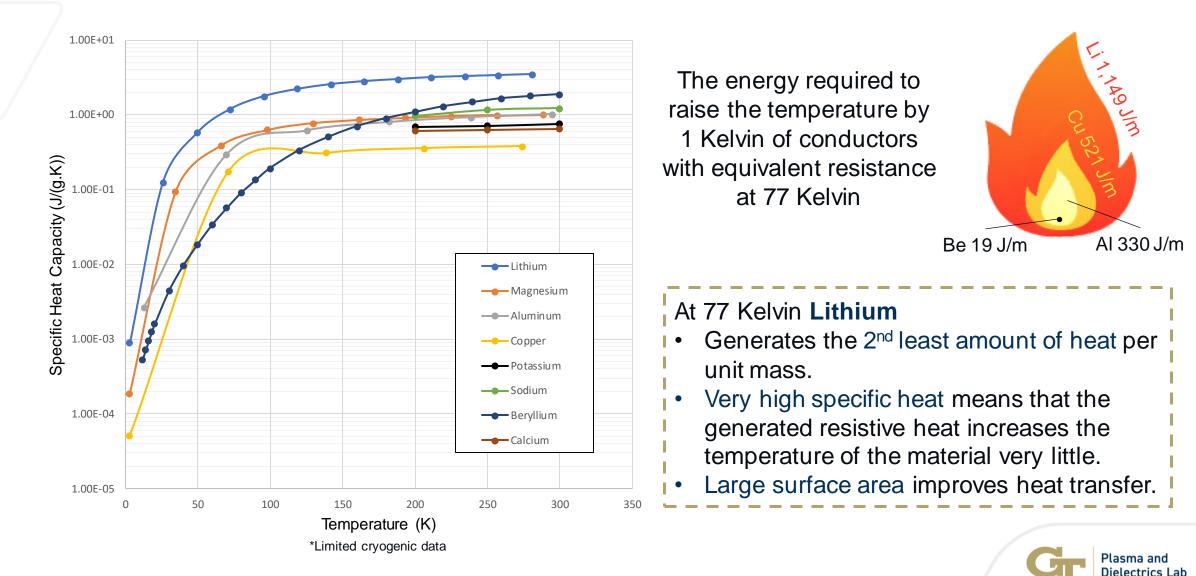
- Minimize weight
- Maximize conductivity
- Serve as a structural and chemically stable barrier for the core material.



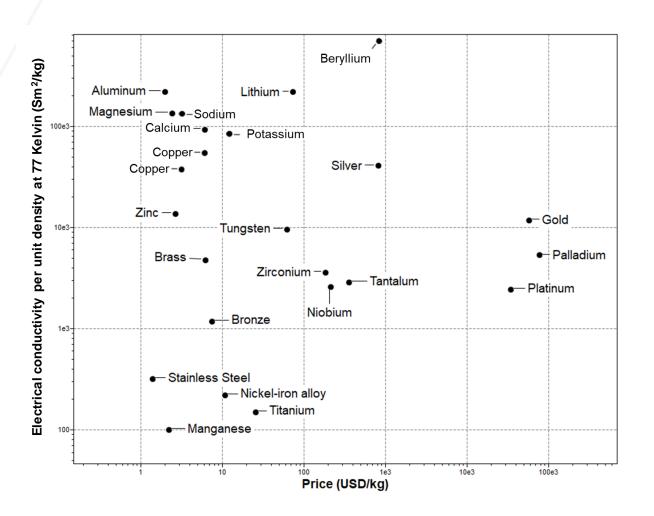
Material Selection- Electrical Performance


Mass and cross-sectional areas of onemeter conductors with equivalent resistance (6.05 μ \Omega/m) at 77 Kelvin

Note: At low temperatures, particularly below 50 K, the electrical resistivity of a material is highly sensitive to sample purity due to the dominance of quantum mechanical effects.



Material Selection – Thermal Performance



7

Material Selection – Thermal Performance Cont.

Material Selection – Cost

Note: This is <u>not</u> at the required level of purity.

Lithium's intrinsic thermal control enables the selection of conductor size by the optimal trade-off between wire mass and resistive energy loss instead of by the maximum permissible wire temperature. Leading to smaller, lighter, and cheaper conductors.

Clad Material Selection @ 77K

Copper

- High Solderability
- Soft, Malleable and Ductile
- Least conductive metal per unit density of the four selected.
- Low specific heat
- Immiscible with Li and Be at the operating temperature

Aluminum

- Inexpensive
- Soft, malleable, and ductile
- 3rd most conductive metal per unit density.
- Low specific heat
- Immiscible with Li and Be at the operating temperature

Core Material Selection @ 77K

Beryllium

- Toxic
- Expensive
- Brittle and hard
- Most conductive metal per unit density.
- Low specific heat
- Small surface area impairs heat transfer.

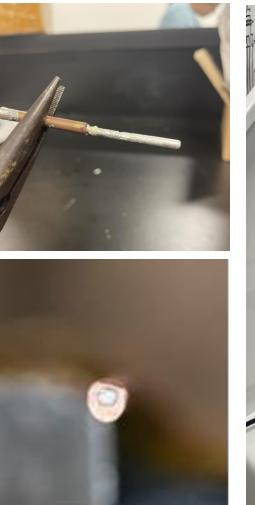
Lithium

- Flammable & Reactive
- Low tensile strength
- Soft, malleable, and ductile
- 2nd most conductive metal per unit density.
- Very high specific heat
- Large surface area improves heat transfer.

More on Lithium (Alkali Metals)

- When heated, it reacts vigorously with nearly all materials, particularly in its molten state.
- It readily catches fire not only in the presence of oxygen but also in other commonly found gases.
- When in contact with water, it produces hydrogen gas.
- Although it doesn't spontaneously ignite in the presence of air, it quickly oxidizes, forming a corrosive and nonconductive substance.
- Its containment is challenging due to an exceptionally high coefficient of thermal expansion.

MATERIAL	TEMP. °C	
ALUMINUM	800	
	600	
	300	
BERYLLIUM	800	
	600	
	300	
CHROMIUM	800	
	600	
	300	
COPPER-BASE ALLOYS (WITH A1, Si, OR Be)	800	
	600	
	300	
COPPER-BASE ALLOYS (WITH Zn OR Sn)	800	
	600	
	300	
COBALT-BASE ALLOYS	800	
	600	
	300	
MOLYBDENUM, COLUMBIUM, TANTALUM, TUNGSTEN	800	
	600	5.7
	300	
NICKEL AND NICKEL ALLOYS (WITH Fe, Cr, Mo)	800	
	600	
	300	
NICKEL ALLOYS (WITH COPPER)	800	
	600	
	300	
PLATINUM, GOLD, SILVER	800	
	600	
	300	
GOOD RESISTANCE	HEDL 77	11-63.6 ITED RES
POOR RESISTANCE	UNK	NOWN RES


FIGURE 19.

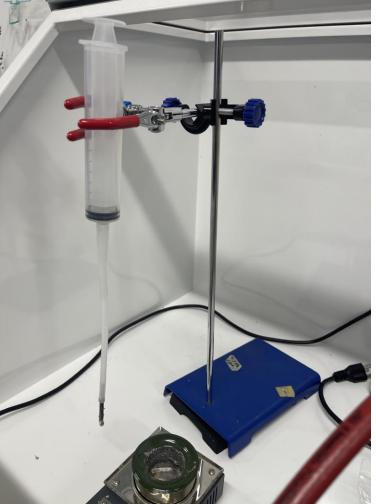
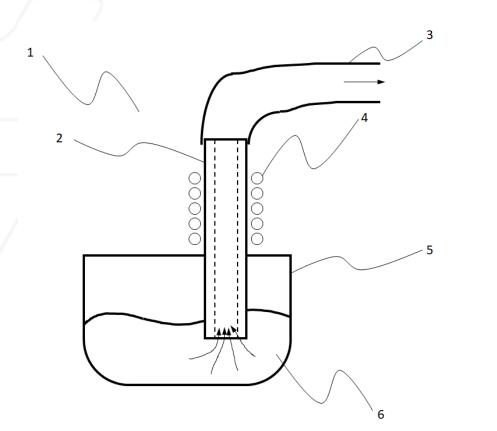
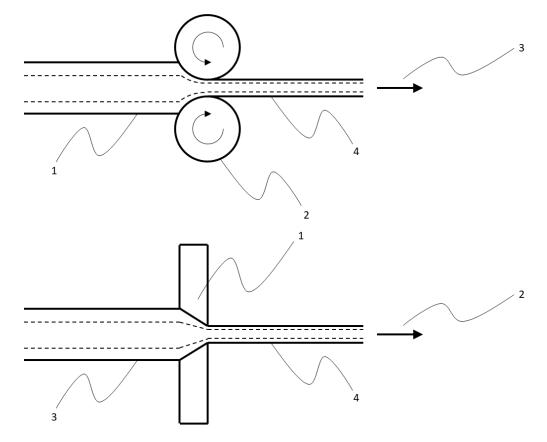

Ref. 8; 1, Figure 11

Figure 19 from: Jeppson, DW, et al. Lithium literature review: lithium's properties and interactions.

Manufacturing Copper-Clad Lithium (CuCLi) Wires



Challenges (and our failures)


- Liquid lithium dissolved cladding metal, lowering its purity and conductivity
- Inert gas atmosphere required
- Potentially incompatible even with lubricants
- Safe wire termination
- Potentially expensive means of manufacture
- Mechanical means to easily cut the wire to the desired length

Manufacturing Copper-Clad Lithium (CuCLi) Wires

Filling Cu pipe with molten Li under Ar atmosphere. <u>Problem:</u> Dissolves Cu into Li, increases resistivity. <u>Potential solution:</u> Shrink and insert Li rod into Cu pipe.

Drawing wire from cylinder assembly. <u>Problem:</u> Work hardening of Cu requires periodic annealing, melting Li, dissolving Cu into Li. Solution: ??

Discussion & Conclusion

- At 1st glance, Li looks like an unlikely candidate for making conductors – but it has some benefits:
 - Non-toxic, good availability, low cost (and likely to drop further)
 - Soft and ductile
 - Second best conductivity per unit density (range: 50-150 K)
- Potential applications:
 - Cryogenic impulse applications
 - High-frequency applications
 - "Odd" geometries (e.g. terminations, clamps, joints, connectors)
 - Conductors in bushings/feedthroughs from RT to cryo
- However:
 - Cladding process needs to be figured out
 - Cheap materials does not necessarily lead to cost reduction

Anyone interested in a collaboration?

A HUI HOU

and a second second

Material Compositions

- 1. Aluminum, commercial purity, 1050A, H19
- 2. Beryllium*
- 3. Brass, CuZn10, C22000, soft
- 4. Bronze, CuSn4, C51000, hard
- 5. Calcium*
- 6. Copper, C12500, hard
- 7. Gold, commercial purity, P00020, cold worked, hard, min 99.5%
- 8. Lithium, commercial purity, min 99.9%
- 9. Magnesium, commercial purity, ASTM 9980A
- 10. Manganese, commercial purity
- 11. Nickel-iron alloy, INVAR, cold worked, hard

- 13. Niobium, commercial purity, Type 2
- 14. Palladium, commercial purity, P03980, cold worked, hard
- 15. Platinum, commercial purity, P04995, annealed
- 16. Potassium*
- 17. Silver, commercial purity, fine, soft
- 18. Sodium*
- 19. Stainless steel, martensitic, AISI 410, hard temper
- 20. Tantalum, commercial purity, R05200, annealed, >99.7% Ta
- 21. Titanium, alpha-beta alloy, Ti-6Al-4V, annealed
- 22. Tungsten, commercial purity, R07004, annealed
- 23. Zinc, commercial purity, High grade, min. 99.9%
- 24. Zirconium, commercial purity, R60001

*Incomplete data sets required the survey of multiple compositions.

Patents

Inventors have been striving to harness the numerous electro-thermodynamic and economic benefits of alkali metal conductors at room temperature. Here is a list of relevant patents.

- 1. Levine D. LIGHTWEIGHT COMPOSITE ELECTRICAL WIRE. Patent #US 7.626,122 B2
- 2. Humphrey L, Westfield G. ALKAL METAL COMPOSTEELECTRICAL CONDUCTORS Patent #US 3,33,049
- 3. Hope H.; Hope S. LIGHTWEIGHT ELECTROCONDUCTIVE WIRE Patent #US 5,057,651
- 4. Fanwood S, Eager G. MANUFACTURE OF BARE OR PRE-INSULATED METAL CLAD SODUM CONDUCTOR Patent #US 3,389,460
- 5. Atkinson C, Butler R, Ross F.METHOD OF MAKING ALKAL METAL-FILLED ELECTRICAL CONDUCTORS AND TERMINATIONS THEREFOR Patent #US 3,717,929
- 6. Volk V. SODIUM CONDUCTOR CABLE Patent #US 3,649,745
- 7. Brandt T, Netzel P, Wharton L. SODIUM FILLED FLEXIBLE TRANSMISSION CABLE. Patent #US 4,056,679
- 8. Iyer N, Carr W, Male A. CRYOGENEC CONDUCTOR. Patent #US 4,927,985

Material Properties Databases

Software:

1. Granta EduPack R1 Version 22.1.2

Publications:

- 2. T. C. Chi; Electrical resistivity of alkali elements. Journal of Physical and Chemical Reference Data 1 April 1979; 8 (2): 339–438. <u>https://doi.org/10.1063/1.555598</u>
- 3. John R. Rumble, ed., CRC Handbook of Chemistry and Physics, 104th Edition (Internet Version 2023), CRC Press/Taylor & Francis, Boca Raton, FL.
- 4. W., J. (2006), Experimental Techniques for Low-Temperature Measurements, Oxford University Press, Oxford, UK
- 5. "Strategic metals prices in February 2020". Institute of Rare Earths and Metals. 5 February 2020. Archived from the original on 2020-02-05.

