

New concept for cryogenic gaseous hydrogencooled lightweight electric engine

Martin Pohl, Richard Grothe, Sebastian Spitzer, Maik Gude, Niels Modler

ICMC2023 // 10th July 2023

VISION

The ILK is the leading international institute for research, development in the field of function-integrative lightweight engineering based on multi-material design

YOUNG TALENTS

graduates per year

ILK-TEAM

245

employees in a broad inter-

disciplinary

team

INDUSTRIAL COOPERATION

with European large-scale industry and regional SMEs

70 years of lightweight research in Dresden

35%	Basic research
35%	Application-oriented research
30%	Industrial Development

TECHNISCHE UNIVERSITÄT

DRESDEN

Promoting initiatives for children, women and young talent ACL e.V. juniorING e.V.

Institut für Leichtbau und

Kunststofftechnik

CONTINUOUS RESEARCH AND

DEVELOPMENT CHAINS

Material, Modelling, Simulation,

Design, Processing, Quality, LCA

INTERNATIONAL NETWORK

among others with partners in UK, Poland, Korea, China, Singapore, Romania, Australia, USA

artners in UK,

~1.000

Alumni since

1997

1. Introduction of the project

TECHNISCHE UNIVERSITÄT DRESDEN

Institut für Leichtbau und

Kunststofftechnik

		Hydrogen-electric propulsion system for av	viation
Design	•	Efficient coil design and optimized cooling systems through additive manufacturing for high power density electric machines ► 10 kW/kg	SIEMENS
Engineering	•	Cryogenic hydrogen as cooling medium and energy source	
	•	New lightweight design of hybrid structures with fiber reinforced composites and additively manufactured metal components	
Simulation	•	Digitalization in product development ► design and simulation process based on a digital twin of electric machines	
Materials	•	Investigation of cryogenic material properties of additively manufactured test specimens	Karlsruher Institut für Technologie
	•	Influence of hydrogen on additively manufactured materials	Leichtbau und Kunststofftechnik

7. Project partners on CEC/ICMC 2023

Date Time	Room	Title	Speaker	Session ID
Monday 9:30 AM	Emalani 320	Additive Manufacturing and hybrid materials in high power	Ch. Weidermann	J1 Or 1A
Monday 5:45 PM	Emalani 320	New concept for cryogenic gaseous hydrogen- cooled lightweight electric engine	M. Pohl	M1 Or 3G
Tuesday 11:30 AM	315	Development of additively manufactured cryogenic heat exchangers for hydrogen-ele	M. Vietze	C2 Or 2B
Wednesday 10:30 AM	318	Cryogenic material testing with gaseous hydrogen for hydrogen-electric aircraft prop	F. Ebling	M3 Or 1A
Wednesday 11:00 AM	318	Cryogenic thermo-physical properties of additive manufactured	KP. Weiss	M3 Or 1A
Wednesday 11:20 AM	318	Additive Manufacturing of Cryogenic Materials	Olaf Rehme	M3 Or 1A

Institut für Leichtbau und

Kunststofftechnik

2. Concept of the power train

Nominal power500 kWMax. torque2000 NmMax. torque2000 nm	Total mass	50 kg
Max. torque 2000 Nm	Nominal power	500 kW
Ma	Max. torque	2000 Nm
Max. speed 3000 rpm	Max. speed	3000 rpm

LH2	Liquid hydrogen
GH2	Gaseous hydrogen
HX	Heat exchanger
EGW	Ethylene glycol water mixture

3. Concept of the stator from the motor

5. Conception hydrogen coupling **Overview**

Requirements

- Low loss of hydrogen ٠
- electrically insulating ٠

Challenges

- Amount of connections (234 joints) •
- Little space for assembly ٠
- Crygenic conditions ٠

5. Conception hydrogen coupling Detailed concepts

Electric

- Voltage difference 1500 V
- Gap between metal estimated with Paschens law, with security factor of 2 we need 0,24 mm distance → 1 mm chosen (more practical)

Hydrogen leakage

- Allowable permeation of 4,6 ml/h/L to not get an ignitable mixture in a flight cycle
- Comparision of the permeability of different sealing materials → sealing lengths between 0,4 mm and 1,8 mm

Mass calculation

ECHNISCHE

NIVERSITÄT

• Use of densities and estimation of the volumes for the coupling concepts

Open question (work in progress)

Institut für

eichtbau und

unststofftechnik

• Sealing behavior under cryogenic conditions

5. Conception hydrogen connector Rating and selection

6. Conception stator bearing Overview

Requirements

- compensate for displacement by cooling the sheet metal package
- Forces due to maneuvering accelerations and torque support must be conducted into the housing

Institut für

Leichtbau und

unststofftechnik

TECHNISCHE UNIVERSITÄT

ESDEN

Preliminary design

- Thickness for the leafspring: steel 0,5 mm, titanium
 1 m, CFRP (canvas fabric) 3,5 mm
- Buckling anlysis shows no problems for the investigated lengths of the leaf springs

6. Conception stator bearing Detailed concepts

Parameter study - deviation from the cylindrical shape of the sheet metal package depending on the spring length

- Variable lengths between 50 mm and 300 mm
- Loads from Torque an flight maneuvers like accelaration or flight of a curve
- Temperature of the sheet metal package

6. Conception stator bearing

Area classification and concepts for leaf spring

6. Conception stator bearing Results of numerical clculation

- Relatively lightly loaded component
- Dimensions are rather dominated by practicable handling

7. Summary

- New concept for cryogenic gaseous hydrogen-cooled lightweight electric engine described
- Estimated masses
 - Sheet metal package: 10 kg
 - Cu coils: 7,1 kg
 - Other stator components: 2,5 kg
 - Rotor with magnets and sheet metal package: 12 kg
 - Total: aprrox. 32 kg

Supported by:

Federal Ministry for Economic Affairs and Climate Action

SIEMENS

MT AEROSPACE

Institut für Leichtbau und Kunststofftechnik

on the basis of a decision by the German Bundestag

Thank You! Questions?

The authors gratefully acknowledge the financial support of the BMWK within the LuFo project "AdHyBau" (20M1904C) and the support in design and simulation by Linus Tönnishoff.

