NASA STMD Cryogenic Fluid Management Portfolio Project Office

NASA Cryogenic Fluid Management Flight Demonstration Summary:
Lockheed Martin 2020 Tipping Point #646
2023 Cryogenic Engineering Conference

William Pratt and Danielle Richey, Lockheed Martin
Jack Chapman and R. Jeremy Kenny, NASA MSFC
Wesley Johnson and Ryan Grotenrath, NASA GRC

www.nasa.gov
Demonstrate Technologies enabling autonomous transfer and storage of cryogenic hydrogen, capable of scaling to tens of metric tons, with negligible losses for long duration in space and on the lunar surface.

Technology Gaps

- LOX/Methane CFM - Zero Boil Off and Liquefaction (100’s Watts @ 90K)
- Zero-Long Duration Cryogenic Storage & Transfer (LO2, LCH4, LH2)
- Advanced Cryocoolers
- Cryogenic Fluid Transfer Operations
- Zero-g Cryogenic Fluid Modeling

- Cryogenic thermal coatings
- Automated Cryo-couplers
- Propellant Densification
- High Vacuum Multi-Layer Insulation
- Unsettled liquid mass gauging
- Low Leakage Cryogenic Valves & Components
- High Capacity Cryocooler (20K / 20W)
- High Capacity Cryocooler (90K / 150W)
- Storage of LH2 Utilizing both 90K & 20K Cryocoolers

- Leveraging Cryogenic ‘Demo’s of Opportunity’ & Tipping Point Technologies
 - CLPS Intuitive Machines Nova-C Lander (RFMG Flight & Data Buy)
 - Tipping Point (Lockheed, ULA, Eta Space, SpaceX) Contracts Awarded
 - Currently in execution

- Fly CFM Demonstration mission in late 2020’s with some of high-capacity active cooling
 - Occurs between Tipping Point & long-duration Mars flight in 2030’s.
 - Currently being studied

Figure Legends

- Solar White: One Inch Diameter Yttrium Oxide (Y2O3) Rigid Tile Sample Sitting on Sample Mold
- Thermo-dynamic Vent
- RGCT Transfer Line Chilldown Test
NOTIONAL CFM DEVELOPMENT ACTIVITIES (DATES ARE EVOLVING)

- **Ground Development**
 - 20 W / 20 K & 150 W / 90 K Cryocoolers
 - Parabolic Chilldown
 - Suborbital Transfer
 - Liquefaction (CryoFILL)
 - Advanced Ground Based Testing (eCryo)

- **ISRU Pilot Plant**
 - O2 liquefaction and storage

- **Large-Scale Flight Demonstration**
 - Zero-loss storage, tank-to-tank transfer, technology and modeling scaling

- **Near-Term CFM Flight Demonstrations**
 - Tipping Points and Flight Opportunities (Multiple)

- **Flight Experiments**
 - ZBOT Series (Simulant fluid ISS experiment)
 - CLPS
 - FBCE - Flow Boiling Experiment(s) on ISS

- **HLS Initial Capability**
 - Artemis 3
 - Artemis 4

- **HLS Sustained Capability Demonstration**

- **Advanced CFM In-Space Model Development**
 - Physics based, high fidelity, high-low, flight data validated, etc.

- **CFM technology maturation has a realistic path to enable storage and transfer capabilities in time to support the future NASA missions**

- **STMD Technology Development**
- **SMD Foundational Experiment**
- **HEOMD Mission**
- **Modeling Efforts**
Cryogenic Demonstration Mission (CDM)

Lockheed Martin led mission for cryogenic fluid management systems

NASA STMD 2020 TIPPING POINT

- In-space demonstration using liquid hydrogen
- Testing more than 12 cryogenic fluid management technologies
- Collaboration with Marshall Spaceflight Center and Glenn Research Center
Integrated cryogenic hydrogen storage & transfer in a single automated spacecraft

On-Orbit Technology Demonstration Mission

- Integrates foundational CFM technologies into a single automated spacecraft
- Advances each technology to at least TRL 7
- Prepares for future integration into large-scale CFM systems
Mission Relevance

Building a Foundational Space Cryogenic System for Exploration

- Robotic Deep Space Exploration
- Human Exploration
- Planetary Surface Systems
- In-Space Refueling
SpaceX

On-Orbit Large-Scale Cryogenic Propellant Management and Transfer Demonstration

Overview: Demonstration of large-scale on-orbit cryogenic fluid transfer (> 10 metric tons) between tanks on a Starship in orbit and management to provide a basis for operational use of in-space refueling technology.

Mission Overview:
- Demonstration conducted as part of a Starship flight
- Active settling maneuver
- Settled transfer between main propellant tank and header tank located in the nosecone.
- ~1 day mission duration

Projected Flight: 2023

![Starship Launch Vehicle](image)

ULA

Cryogenic (H₂/O₂) Smart Propulsion Flight Demonstration

Overview: Flight demonstration of key CFM technologies:
- passive thermal control,
- tank pressure control,
- tank-to-tank propellant transfer

Mission Overview:
- Demonstration occurs after primary spacecraft is separated; demonstration hardware integrated with Centaur V
- ~1 day on-orbit duration

Projected Flight: 2025

![Vulcan Launch Vehicle](image)
2020 TIPPING POINT CONTRACTS – ‘PAYLOAD CFM FLIGHT DEMOS’

Eta Space
Liquid Oxygen Flight Demonstration (LOXSAT-1)

Overview: Develop, launch and fly a technology demonstration payload designed to test multiple CFM technologies necessary for creating practical propellant depots.

Mission Overview:
- Flight demonstration based on:
 - Zero fluid loss storage in LEO environment
 - Control of fluid position and thermodynamic state
 - Control of tank pressure using autogenous and helium pressurization
 - Tank-to-tank fluid transfer
- LOXSAT 1 hosted on a dedicated Rocket Lab Photon satellite bus
- ~ 9 month mission

Projected Flight: 2024

Lockheed Martin
Cryogenic Demonstration Mission (CDM)

Overview: Ground testing and flight demonstration of cryogenic LH2 transfer and long duration storage in space. CDM incorporates CFM technologies into a single system that demonstrates the transfer, storage, and pressure control of LH2 through ground testing and flight demonstration.

Mission Overview:
- Demonstrate passive and active LH2 storage
- Demonstrate transfer of LH2 between a storage tank and receiver
- ~ 2 month mission demonstration

Projected Flight: 2025