# Measurements of MDT chamber resolution from 2001 to 2010

Steve Ahlen Boston University BMC Meeting, Harvard December 16, 2010

- MDT design parameters:
  - Operation at 3 bars of Ar-CO2 (93-7), with gas gain of 20,000.
  - Wire placement precision better than 20 microns.
  - Epoxy joint stability better than 5 microns.
  - 80 micron single tube resolution, dominated by longitudinal electron diffusion.
- My three greatest concerns:
  - Degradation of sealing materials leading to gas leaks.
  - Degradation of electronics leading to sparks.
  - Gas ageing leading to loss of gain and tracking resolution.
  - Poor ageing of epoxy leading to cracked joints and loss of resolution.
- For ten years I have been monitoring MDT performance for signs of the onset of these things. Most useful data:
  - ADC histograms
  - TDC histograms
  - Tube hits histograms (number of tubes hit per trigger)
  - Track fit residuals

BMC Mod-0 (EIL1) was first ATLAS MDT chamber tested with nearly-standard MDT electronics

- Mod-0 built by Ahlen, Alex Marin, Rick Haggerty, Peter Hurst in May 2000
- Gas system installed on Mod-0 (Rick Haggerty) in January 2001
- Initial electrical tests (Joao Guimaraes da Costa) from January - March 2001
- DAQ set up and debugged (Ahlen) from April May 2001
- Initial data taking on cosmic rays (Ahlen) from June -August 2001
- Initial data analysis (Ahlen) from September October 2001
- Noise studies (G. Brandenburg, J. Oliver, D. Sherman) in November 2001

#### BMC Test Stand set up by Ahlen and Haggerty (Muon energy > 1 GeV)





## DAQ

- Standard run time was 25 minutes
- Trigger required q1 and q3 and q4
- 100,000 triggers in standard run
- 76,000 clean, single muons from scintillator data
- 16,000 events with 8 layers hit and 8 drift tubes hit
- Drift tube and PMT timing synchronized by having CSM-0 clock output go into one of the PMT TDC inputs
- T0 was determined to 0.4 ns

## Drift tube hit distribution for muons selected with scintillator trigger (mean muon energy = 5 MeV)



# Various timing corrections required to get good chamber resolution

- TDC card initialization offsets (12.5 ns)
- Clock (synchronization of scintillator and drift tubes)
- Transit of light along bottom scintillator
- Transit time along wire
- Time of flight
- Trigger time variations due to cable/electronics variations for bottom scintillator layer

#### Time of flight rms = single PMT rms = 400 ps



## **Resolution study**

- Select layer not used for track fit
- Best of 128 possibilities for 7 other layers
- Reject worst tube
- Best of 64 possibilities for 6 layers
- Compare fit position with excluded layer's impact parameter

## Residuals (fitted impact parameter minus circle radius in mm) for layer 3. 5% of hits are due to delta rays



Impact parameter (mm)

#### Residuals for layer 3: FWHM/2.35 = 85 microns



Residual (mm)

## 7 muon tracks superimposed

![](_page_12_Picture_1.jpeg)

## Track fitting tests during integration 2003 to 2004

- Each of the 80 fully integrated BMC chambers was tested at Harvard in a modified version of the cosmic ray test stand.
- The chambers were on rolling tables and moved under trigger scintillators.
- The resolutions were not quite as good as for Mod-0 due to the absence of the concrete shield, allowing electrons and low energy muons to trigger the chambers.
- Mod-0 ran continuously from 2001 to 2003 with only one problem (a spark problem that disappeared while it was being investigated).

### Commissioning at CERN, 2005 to 2007

- All Small Wheel and Big Wheel chambers were evaluated with "Noise Runs" in Building 180 and after installation in the ATLAS cavern.
- Most of the "Noise" was due to gamma rays from surrounding material and from chamber materials.
- We used a 3kHz periodic trigger, 1.2  $\mu s$  window, since it was not practical to have trigger chambers.
- 15 hour standard run has 194 sec live time.
- Typical number of cosmic rays was 25,000 per 15 hr run.

## Ahlen's Track Fitting Program

- Modified for commissioning testing at CERN (used floating T<sub>0</sub> since no trigger).
- Consider each of 256 possibilities for each event (left or right side of wire) (64 for EM, EO).
- Consider each of (as many as) 1000 possible values of  $T_{0.}$
- Select case for which the sum of the square errors is minimized.
- No attempt to reject delta rays; delta-ray-free events can be identified from chi-square: 0.95<sup>8</sup> = 66% of 8 layer chambers, 0.95<sup>6</sup> = 73% of 6 layer chambers.

### Resolution in pit with cosmic rays using 15 hr Noise Runs

- Enough events for cosmic ray track fitting in pit.
- Mean muon energy from wall = 50 GeV.
- Periodic 3kHz trigger, 15 hr runs.
- Residual distributions on next 2 slides for 80 Big Wheel C side chambers in pit.
- Graham Rowlands did this for senior thesis at BU.
- FWHM of residual distributions  $\approx$  200 microns.

#### **Residuals for Small Sectors**

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

(b) Residuals of emsc04

![](_page_17_Figure_4.jpeg)

(c) Residuals of emsc06

(d) Residuals of emsc08

![](_page_17_Figure_7.jpeg)

![](_page_17_Figure_8.jpeg)

(b) Residuals of emsc12

![](_page_17_Figure_10.jpeg)

![](_page_17_Figure_11.jpeg)

(c) Residuals of emsc14

#### **Residuals for Large Sectors**

![](_page_18_Figure_1.jpeg)

£

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_3.jpeg)

1000 CT

0002145

![](_page_18_Figure_4.jpeg)

(d) Residuals of emsc07

![](_page_18_Figure_6.jpeg)

emétant.

![](_page_18_Figure_7.jpeg)

(a) Residuals of emlc09

(b) Residuals of emlc11

1000 0.000 **WHOM** 

\*

eni5c11

(c) Residuals of emlc13

# Resolution studies with endcap chambers for cosmic runs Fall 2008

- From run 91060.
- Three-fold coincidence: EO + EM + EI (muon energy is typically larger than 20 GeV).
- Tubes selected by ATLAS tracking program.
- Keep events with exactly 8 hits (EI), 6 hits (EM, EO).
- Exclude events with multiple options.
- 632 events, 290 Chambers:
  - 86 El Chambers
  - 86 EM Chambers
  - 118 EO Chambers

## RT function used

(from Dan Levin's standard stretched for 2% increase in T<sub>max</sub>)

![](_page_20_Figure_2.jpeg)

Dan Levin's Universal RT Function, which he modifies as appropriate for differing conditions

![](_page_21_Figure_1.jpeg)

#### TO(EI top, EM, EO) vs. EM Chamber # (color for EC)

![](_page_22_Figure_1.jpeg)

#### Residuals (µm) vs R (mm) (EI top, EM middle, EO bottom)

![](_page_23_Figure_1.jpeg)

#### El residuals, $\sigma_{narrow} = 87 \ \mu m$ Single tube resolution = $87^*$ sqrt(8/5) = 110 $\mu m$

![](_page_24_Figure_1.jpeg)

#### EM residuals, $\sigma_{narrow} = 77 \ \mu m$ Single tube resolution = $77^*$ sqrt(6/3) = 109 $\mu m$

![](_page_25_Figure_1.jpeg)

#### EO residuals, $\sigma_{narrow} = 71 \ \mu m$ Single tube resolution = $71^*$ sqrt(6/3) = 100 $\mu m$

![](_page_26_Figure_1.jpeg)

## From Dan Levin's commissioning fits using excluded tube to determine resolution

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

28

## Resolution in late 2009 of EI Chambers

- Cosmic ray run 131576
- EI, EM, EO coincidence
- 8-6-6 hits
- Only one option for segments
- Only one chamber involved in each station
- 2742 events

#### RT function (Ahlen): r(mm) vs. TDC channel

![](_page_29_Figure_1.jpeg)

66% of the EI segments should have no delta rays

Tail of chi distribution for Ahlen's fits shows evidence of delta rays (chi > 240  $\mu$ m for 32% of events)

![](_page_30_Figure_2.jpeg)

## Residuals for Ahlen fits: FWHM/2.35 = 97 $\mu$ m for El chambers

For chi < 240  $\mu$ m: FWHM/2.35 = 90  $\mu$ m

![](_page_31_Figure_2.jpeg)

Ahlen r(mm) minus Moore r(mm) for chi < 240  $\mu$ m (no delta rays); FWHM/2.35 = 150  $\mu$ m

![](_page_32_Figure_1.jpeg)

Agreement is good for most events; some events with poor agreement are shown: Moore fit on left, Ahlen fit on right.

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Figure_3.jpeg)

![](_page_33_Figure_4.jpeg)

![](_page_33_Figure_5.jpeg)

![](_page_33_Figure_6.jpeg)

### Studies of MDT performance for high luminosity run using raw data

- Analysis being done by Mike Kruskal using tools he developed for high energy neutron induced crosstalk studies.
- We are using run 167776.
  - October 27, 2010
  - 6305 nb<sup>-1</sup>
  - Peak luminosity = 1.81 x 10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - 348 colliding bunch pairs
  - 150 ns bunch spacing
  - 7,283,888 muon triggered events analyzed

#### ADC > 50 cut; 150 ns bunch spacing is apparent

![](_page_35_Figure_1.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_39_Figure_0.jpeg)

### Hit histogram for noise run for EML1C09 in Bldg 180

![](_page_40_Figure_1.jpeg)

41

#### High multiplicity events were observed in 15 hour commissioning runs

- Very large multiplicity events
  - Two neighboring tubes with large pulses that arrive late.
  - Other tubes hit at same time.
  - Cross talk mainly on same layer with reduced effect on adjacent layers – probably cross talk along HV path.
  - All chambers seem to have this "feature" typical rates are about 0.1 Hz.
  - Some chambers had rates > 10 Hz; these were fixed by replacing the HV Hedgehog Card.

#### Single layer event – two neighboring channels with big pulses arrive late

![](_page_42_Figure_1.jpeg)

#### EML3C09 tube hit distribution in Pit – peak around 64 tubes, number in layer

![](_page_43_Figure_1.jpeg)

44

## Future Work

- Continue to characterize tracks for this run, to identify simple techniques for extracting muon segments and tracks from data.
- Use our track fitting program to measure muon segment TO's (and compare to BCID) and determine track fit residuals at 1.8 x 10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup> luminosity.
- Study simple methods for global track fitting.